首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of calluses derived from susceptible and resistant goosegrass (Eleusine indica (L.) Gaertn.) biotypes to dinitroaniline herbicides, which disrupt interphase and mitotic-spindle microtubules, was evaluated. A callus culture derived from the resistant biotype retained resistance to both trifluralin (dinitroaniline herbicide) and amiprophosmethyl (phosphorothioamidate herbicide). The site for the interaction between -tubulin subunit and dinitroaniline or phosphorothioamidate herbicides was identified by computer simulation. A correlation was found between the level of callus sensitivity to herbicide tested and the pattern of herbicide interaction with -tubulin.  相似文献   

2.
The repeated use of dinitroaniline herbicides on the cotton and soybean fields of the southern United States has resulted in the appearance of resistant biotypes of one of the world's worst weeds, Eleusine indica. Two biotypes have been characterized, a highly resistant (R) biotype and an intermediate resistant (I) biotype. In both cases the resistance has been attributed to a mutation in α-tubulin, a component of the α/β tubulin dimer that is the major constituent of microtubules. We show here that the I-biotype mutation, like the R-biotype mutation shown in earlier work, can confer dinitroaniline resistance on transgenic maize calli. The level of resistance obtained is the same as that for E. indica I- or R-biotype seedlings. The combined I- and R-biotype mutations increase the herbicide tolerance of transgenic maize calli by a value close to the summation of the maximum herbicide tolerances of calli harbouring the single mutations. These data, taken together with the position of the two different mutations within the atomic structure of the α/β tubulin dimer, imply that each mutation is likely to exert its effect by a different mechanism. These mechanisms may involve increasing the stability of microtubules against the depolymerizing effects of the herbicide or changing the conformation of the α/β dimer so that herbicide binding is less effective, or a combination of both possibilities.  相似文献   

3.
Oryzalin is a much-used pre-emergence herbicide which causes microtubules (Mt) to depolymerize. Here, we document that this dinitroaniline herbicide also leads to characteristic changes in the morphology of the endoplasmic reticulum (ER) and Golgi apparatus. These effects, which are reversible upon washing out the herbicide, are already elicited at low concentrations (2 μM) and become most pronounced at 20 μM. For our studies, we have employed roots of Arabidopsis thaliana, tobacco leaf epidermal cells, and BY-2 suspension cultures, all expressing the luminal ER marker GFP::HDEL. In all cell types, the typical cortical network of the ER assumed a pronounced nodulated morphology with increasing oryzalin concentrations. This effect was enhanced through subsequent application of brefeldin A (BFA). Thin sections of Arabidopsis roots observed in the electron microscope revealed the nodules to consist of a mass of anastomosing ER tubules. Oryzalin also caused the cisternae in Golgi stacks to increase in number but reduced their diameter. Oryzalin retarded ER mobility but did not prevent latrunculin B-induced clustering of Golgi stacks on islands of cisternal ER. While the mechanism underlying these changes in endomembranes remains unknown, it is specific for oryzalin since these effects were not elicited with other Mt-depolymerizing herbicides, e.g., trifluralin, amiprophosmethyl, or colchicine.  相似文献   

4.
Summary Microtubule arrays in developing spermatogenous cells of pteridophytes have unique microtubule organizing centers and post-translation modifications of tubulin. Sensitivity of these arrays to the microtubule-destabilizing effects of the mitotic disrupter herbicides was examined by immunofluorescence, transmission and immunogold electron microscopy. Acetylated, stabilized arrays, such as the spline, and microtubules of the basal bodies and flagella are formed after the final mitotic division and are resistant to these herbicides. Non-acetylated, dynamic arrays that exist prior to the final mitosis, such as interphase and mitotic arrays, are eliminated by all of these herbicides, with symptomology (arrested prometaphase, lobed nuclei, irregular cell plate formation) similar to that observed in other land plants. The only exception to the instability of these mitotic microtubule arrays are the few microtubules that are collected by kinetochores into short tufts. The presence of structurally-distinguishable MTOCs, such as the blepharoplast, did not confer resistance, despite the anchoring of the minus ends of the microtubules. Simultaneous treatment with herbicide and 5-bromodeoxyuridine (BrdU), with subsequent detection with anti-BrdU of cells that had gone through S-phase during the BrdU incubation, reveals that only acetylated arrays formed prior to herbicide treatment are resistant. These data indicate that only actively polymerizing, dynamic microtubule arrays are sensitive to the destabilizing effects of the mitotic disrupter herbicides.Abbreviations MTOC microtubule organizing center - BrdU 5-bromodeoxyuridine  相似文献   

5.
Summary Although there are numerous herbicides that disrupt mitosis as a mechanism of action, to date not one has compared the effects of these disrupters on a single species and over a range of concentrations. Oat seedlings, treated with a range of concentrations of nine different mitotic disrupter herbicides, were examined by immunofluorescence microscopy of tubulin in methacrylate sections. All herbicides caused the same kinds of microtubule disruption, although the concentrations required to cause the effects differed markedly between the herbicides. Effects on spindle and phragmoplast mitotic microtubule arrays were seen at the lowest concentrations and manifested as multipolar spindles and bifurcated phragmoplasts (which subsequently resulted in abnormal cell plate formation). At increasing concentrations, effects on mitotic microtubule arrays manifested as microtubule tufts at kinetochores and reduction of cortical microtubules resulting in arrested prometaphase figures and isodiametric cells. These data indicate that all mitotic disrupter herbicides have a common primary mechanism of action, inhibition of microtubule polymerization, and that marginal effects observed in the past were the result of incomplete inhibition and/or differential sensitivity of the microtubule arrays.Abbreviations DCPA 2,3,5,6-tetrachloroterephthalic acid dimethyl ester - APM amiprophosmethyl - DAPI 4,6-diamidino-2-phenyl indole - MTOC microtubule organizing center  相似文献   

6.
This review describes different approaches to employment of new marker genes in selection of transformed plant cells, which are based on the use of mutant tubulin genes from natural plant biotypes and, in prospect, induced plant mutants. The results of studies of plant (biotypes, mutants) resistance to herbicides with antimicrotubular mode of action at molecular and cellular levels were summarized. The reports on the transfer and expression of mutant tubulin genes conferring resistance to amiprophosmethyl (phosphorothioamidate herbicide) and trifluralin (dinitroaniline herbicide) from corresponding Nicotiana plumbaginifolia mutants in related and remote plant species by somatic hybridization methods were analyzed. The results of experiments on transformation of monocotyledonous and dicotyledonous plants by mutant α-tubulin gene conferring resistance to dinitroanilines are described to test the possibility of its use as a marker gene and simultaneously obtaining dinitroaniline-resistant plants.  相似文献   

7.
Electromagnetic activity around yeast mitotic cells (Saccharomyces cerevisiae) was measured in the frequency range 8–9 MHz and special care was taken to extract reliable information from the raw signals. The characteristic of cold-sensitive tubulin mutants tub2-401 and tub2-406, which come to arrest before mitosis at a restrictive temperature (14°C) and which re-enter mitosis upon a shift back to a permissive temperature (28°C), was used to prepare synchronized mitotic cells. Immunofluorescence microscopy using an antitubulin antibody was used to analyze microtubular structures. The arrested tub2-401 mutant that had back-shifted to permissive temperature displayed no microtubules and no electromagnetic activity around the cells. In contrast, the arrested cells of the mutant tub2-406 displayed developed, but aberrant, nonfunctional microtubules and a high electromagnetic activity around the cells. The electromagnetic activity around the arrested mutant tub2-401 back-shifted to permissive temperature peaks at four time points which may coincide with (i) formation of the mitotic spindle, (ii) binding of chromatids to kinetochore microtubules, (iii) elongation of the spindle in anaphase A, and (iv) elongation of the spindle in anaphase B. The profile of the electromagnetic activity around the synchronized mutant tub2-406 at permissive temperature seems to be delayed by the time required for aberrant nonfunctional microtubules to be depolymerized. Experimental results presented in this paper support Pohl's idea of existence of the electromagnetic field around yeast cells.  相似文献   

8.
Dinitroaniline and phosphorothioamidate herbicides disrupt microtubule assembly from tubulin protein dimers and thereby halt microtubule-based processes such as mitosis in plant cells. Despite the contrasting chemical properties of dinitroaniline and phosphorothioamidate herbicides, a three-dimensional molecular analysis revealed remarkable electrostatic similarity between these two classes of herbicide. From these data it is proposed that dinitroaniline and phosphorothioamidate herbicides share common binding site(s) in the plant cell.  相似文献   

9.
The protein kinase inhibitor 2-aminopurine induces checkpoint override and mitotic exit in BHK cells which have been arrested in mitosis by inhibitors of microtubule function (Andreassen, P. R., and R. L. Margolis. 1991. J. Cell Sci. 100:299-310). Mitotic exit is monitored by loss of MPM-2 antigen, by the reformation of nuclei, and by the extinction of p34cdc2-dependent H1 kinase activity. 2-AP-induced inactivation of p34cdc2 and mitotic exit depend on the assembly state of microtubules. During mitotic arrest generated by the microtubule assembly inhibitor nocodazole, the rate of mitotic exit induced by 2-AP decreases proportionally with increasing nocodazole concentrations. At nocodazole concentrations of 0.12 microgram/ml or greater, 2-AP induces no apparent exit through 75 min of treatment. In contrast, 2-AP brings about a rapid exit (t1/2 = 20 min) from mitotic arrest by taxol, a drug which causes inappropriate overassembly of microtubules. In control mitotic cells, p34cdc2 localizes to kinetochores, centrosomes, and spindle microtubules. We find that efficient exit from mitosis occurs under conditions where p34cdc2 remains associated with centrosomal microtubules, suggesting it must be present on these microtubules in order to be inactivated. Mitotic slippage, the natural reentry of cells into G1 during prolonged mitotic block, is also microtubule dependent. At high nocodazole concentrations slippage is prevented and mitotic arrest approaches 100%. We conclude that essential components of the machinery for exit from mitosis are present on the mitotic spindle, and that normal mitotic exit thereby may be regulated by the microtubule assembly state.  相似文献   

10.
In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis.  相似文献   

11.
A monoclonal antibody raised against mitotic spindles isolated from CHO cells ([CHO1], Sellitto, C., and R. Kuriyama. 1988. J. Cell Biol. 106:431-439) identifies an epitope that resides on polypeptides of 95 and 105 kD and is localized in the spindles of diverse organisms. The antigen is distributed throughout the spindle at metaphase but becomes concentrated in a progressively narrower zone on either side of the spindle midplane as anaphase progresses. Microinjection of CHO1, either as an ascites fluid or as purified IgM, results in mitotic inhibition in a stage-specific and dose-dependent manner. Parallel control injections with nonimmune IgMs do not yield significant mitotic inhibition. Immunofluorescence analysis of injected cells reveals that those which complete mitosis display normal localization of CHO1, whereas arrested cells show no specific localization of the CHO1 antigen within the spindle. Immunoelectron microscopic images of such arrested cells indicate aberrant microtubule organization. The CHO1 antigen in HeLa cell extracts copurifies with taxol-stabilized microtubules. Neither of the polypeptides bearing the antigen is extracted from microtubules by ATP or GTP, but both are approximately 60% extracted with 0.5 M NaCl. Sucrose gradient analysis reveals that the antigens sediment at approximately 11S. The CHO 1 antigen appears to be a novel mitotic MAP whose proper distribution within the spindle is required for mitosis. The properties of the antigen(s) suggest that the corresponding protein(s) are part of the mechanism that holds the antiparallel microtubules of the two interdigitating half spindles together during anaphase.  相似文献   

12.
Spindle assembly is essential for the equal distribution of genetic material to the daughter cells during mitosis. The process of spindle assembly is complicated and involves multiple levels of molecular regulation. It is generally accepted that mitotic spindles are emanated from the centrosomes and are assembled in the vicinity of chromosomes. However, the molecular mechanism involved in the spindle assembly during mitosis remains unclear. In this study, we have provided several lines of evidence to show that Drosophila Mars is required for the assembly and stabilization of kinetochore microtubules. In an immunocytochemical study, we show that Mars is mainly localized on the kinetochore microtubules during mitosis. Using RNA interference to deplete the Mars expression in Drosophila S2 cells resulted in the malformation of mitotic spindle that mainly lacked the kinetochore microtubules. The spindle defect resulted in mitotic delays by increasing the percentage of uncongressed chromosomes both in vitro and in vivo. In summary, this study has extended our previous study of Mars in cell cycle regulation and provided further evidence showing that Mars is required for the assembly of kinetochore microtubules.  相似文献   

13.
A single unattached kinetochore can delay anaphase onset in mitotic tissue culture cells (Rieder, C.L., A. Schultz, R. Cole, G. Sluder. 1994. J. Cell Biol. 127:1301–1310). Kinetochores in vertebrate cells contain multiple binding sites, and tension is generated at kinetochores after attachment to the plus ends of spindle microtubules. Checkpoint component Mad2 localizes selectively to unattached kinetochores (Chen, R.-H., J.C. Waters, E.D. Salmon, and A.W. Murray. 1996. Science. 274:242–246; Li, Y., and R. Benezra. Science. 274: 246–248) and disappears from kinetochores by late metaphase, when chromosomes are properly attached to the spindle. Here we show that Mad2 is lost from PtK1 cell kinetochores as they accumulate microtubules and re-binds previously attached kinetochores after microtubules are depolymerized with nocodazole. We also show that when kinetochore microtubules in metaphase cells are stabilized with taxol, tension at kinetochores is lost. The phosphoepitope 3f3/2, which has been shown to become dephosphorylated in response to tension at the kinetochore (Nicklas, R.B., S.C. Ward, and G.J. Gorbsky. 1995. J. Cell Biol. 130:929–939), is phosphorylated on all 22 kinetochores after tension is reduced with taxol. In contrast, Mad2 only localized to an average of 2.6 out of the 22 kinetochores in taxol-treated PtK1 cells. Therefore, loss of tension at kinetochores occupied by microtubules is insufficient to induce Mad2 to accumulate on kinetochores, whereas unattached kinetochores consistently bind Mad2. We also found that microinjecting antibodies against Mad2 caused cells arrested with taxol to exit mitosis after ~12 min, while uninjected cells remained in mitosis for at least 6 h, demonstrating that Mad2 is necessary for maintenance of the taxol-induced mitotic arrest. We conclude that kinetochore microtubule attachment stops the Mad2 interactions at kinetochores which are important for inhibiting anaphase onset.  相似文献   

14.
Enantiomers of triaziflam and structurally related diaminotriazines were synthesized and their herbicidal mode of action was investigated. The compounds caused light and dark-dependent effects in multiple test systems including heterotrophic cleaver and photoautotrophic algal cell suspensions, the Hill reaction of isolated thylakoids and germinating cress seeds. Dose-response experiments revealed that the (S)-enantiomers of the compounds preferentially inhibited photosystem II electron transport (PET) and algae growth with efficacies similar to that of the herbicide atrazine. In contrast, the (R)-enantiomers of the diaminotriazines were up to 100 times more potent inhibitors of growth in cleaver cell suspensions and cress seedlings in the dark than the (S)-enantiomers. The most active compound, the (R)-enantiomer of triaziflam, inhibited shoot and root elongation of cress and maize seedlings at concentrations below 1 microM. The meristematic root tips swelled into a club shape which is typical for the action of mitotic disrupter herbicides and cellulose biosynthesis inhibitors. Microscopic examination using histochemical techniques revealed that triaziflam (R)-enantiomer blocks cell division in maize root tips 4 h after treatment. The chromosomes proceeded to a condensed state of prometaphase but were unable to progress further in the mitotic cycle. Disruption of mitosis was accompanied by a loss of spindle and phragmoplast micotubule arrays. Concomitantly, cortical microtubules decreased which could lead to isodiametric cell growth and consequently to root swelling. In addition, a decline in cellulose deposition in cell walls was found 24 h after treatment. Compared to the (R)-form, triaziflam (S)-enantiomer was clearly less active. The results suggest that triaziflam and related diaminotriazines affect enantioselectively multiple sites of action which include PET inhibitory activity, mitotic disruption by inhibiting microtubule formation and inhibition of cellulose synthesis.  相似文献   

15.
A biotype of Stellaria media (L.) Vill. has been identified that is highly resistant to the herbicide chlorsulfuron. Resistance is due to an altered acetolactate synthase (ALS) that is much less sensitive to chlorsulfuron than the ALS from the susceptible (S) biotype. The S biotype was extremely sensitive to D489 (N-[2,6-dichlorophenyl]-5,7-dimethyl-1,2,4-triazolo[1,5a] pyrimidine-2-sulfonamide), a member of a new class of triazolopyrimidine herbicides, while the chlorsulfuron-resistant biotype exhibited complete cross-resistance at both the whole plant and enzyme levels. ALS activity of the S biotype was reduced by approximately 90% in the presence of 0.1 micromolar D489, while that of the R biotype was reduced by less than 10%. This result suggests that the two herbicides share a common binding site on ALS. Only very slight cross-resistance at the ALS level was found to imazamethabenz, an imidazolinone herbicide.  相似文献   

16.
Cancer is a major cause of mortality in developed countries, following only cardiovascular diseases. Death of cancerous cells can be achieved by stopping mitosis and the antimitotic class of drugs formed by the spindle poisons can be used for this purpose. Their role is to disorganize the mitotic spindle by targeting its main constituent, the microtubules, themselves made of heterodimers of alpha and beta-tubulin. They disrupt the dynamics of the microtubules either by stabilizing them, as do paclitaxel or epothilones, or destabilizing them, as do colchicine. The binding site of colchicine seems to lie between the two units of the tubulin dimer. Here, we report on the characterization of this site by the docking of a series of reference compounds, and the subsequent docking of ligands prepared in our laboratory.  相似文献   

17.
Cancer is a major cause of mortality in developed countries, following only cardiovascular diseases. Death of cancerous cells can be achieved by stopping mitosis and the antimitotic class of drugs formed by the spindle poisons can be used for this purpose. Their role is to disorganize the mitotic spindle by targeting its main constituent, the microtubules, themselves made of heterodimers of α and β-tubulin. They disrupt the dynamics of the microtubules either by stabilizing them, as do paclitaxel or epothilones, or destabilizing them, as do colchicine. The binding site of colchicine seems to lie between the two units of the tubulin dimer. Here, we report on the characterization of this site by the docking of a series of reference compounds, and the subsequent docking of ligands prepared in our laboratory.  相似文献   

18.
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.  相似文献   

19.
Yu Q  Cairns A  Powles S 《Planta》2007,225(2):499-513
Glyphosate is the world’s most widely used herbicide. A potential substitute for glyphosate in some use patterns is the herbicide paraquat. Following many years of successful use, neither glyphosate nor paraquat could control a biotype of the widespread annual ryegrass (Lolium rigidum), and here the world’s first case of multiple resistance to glyphosate and paraquat is confirmed. Dose–response experiments established that the glyphosate rate causing 50% mortality (LD50) for the resistant (R) biotype is 14 times greater than for the susceptible (S) biotype. Similarly, the paraquat LD50 for the R biotype is 32 times greater than for the S biotype. Thus, based on the LD50 R/S ratio, this R biotype of L. rigidum is 14-fold resistant to glyphosate and 32-fold resistant to paraquat. This R biotype also has evolved resistance to the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of paraquat resistance in this biotype was determined as restricted paraquat translocation. Resistance to ACCase-inhibiting herbicides was determined as due to an insensitive ACCase. Two mechanisms endowing glyphosate resistance were established: firstly, a point mutation in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, resulting in an amino acid substitution of proline to alanine at position 106; secondly, reduced glyphosate translocation was found in this R biotype, indicating a co-occurrence of two distinct glyphosate resistance mechanisms within the R population. In total, this R biotype displays at least four co-existing resistance mechanisms, endowing multiple resistance to glyphosate, paraquat and ACCase herbicides. This alarming case in the history of herbicide resistance evolution represents a serious challenge for the sustainable use of the precious agrochemical resources such as glyphosate and paraquat.  相似文献   

20.
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号