首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:考察不同细胞培养方式对Streptomyces sp. M-Z18转化前体L-赖氨酸合成ε-聚赖氨酸过程的影响。方法:利用两阶段细胞培养和发酵过程流加方式,建立了两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸以及转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸的策略。结果:(1)两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸策略实现ε-PL积累15 g/L, 转化L-赖氨酸3 g/L;(2)转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸策略使得ε-PL产量达到33.76 g/L,单位菌体的合成能力提高37.8%,转化L-赖氨酸4 g/L。这表明,上述两种方式下前体L-赖氨酸都能够被Streptomyces sp. M-Z18转化合成ε-聚赖氨酸,但转化效率还有待进一步提高。意义:揭示了Streptomyces sp. M-Z18合成ε-聚赖氨酸的限速步骤在于初级代谢产物L-赖氨酸的合成,这为后续利用代谢工程手段改造菌株提供了方向。  相似文献   

2.
Lactic acid production from agriculture residues   总被引:5,自引:0,他引:5  
Various agriculture feedstock residues were evaluated for lactic acid production by simultaneous saccharification and fermentation (SSF) using Lactobacillus delbrueckii and Lactobacillus plantarum, without any additional nutrients. Lactic acid production was higher in alfalfa fiber and soya fiber compared to corncob (soft) and wheat straw. In Lactobacillus plantarum, the amount of lactic acid obtained from alfalfa fiber and soya fiber was 46 and 44 g/100 g fiber, respectively. However, in Lactobacillus delbrueckii, the lactic acid production in soya fiber was 44 g/100 g fiber and that of alfalfa was 32 g/100 g fiber. Small amounts of acetic acid were also produced from SSF of agricultural feedstocks residues. During SSF of alfalfa fiber, lactic acid production in both L. delbrueckii and L. plantarum was enhanced by adding pectinases and cellulases. Lactic acid production from alfalfa fiber did not change with increasing O2 transfer rates in the fermentation medium, whereas acetic acid production in both Lactobacillus cultures increased with increasing O2 transfer rates.  相似文献   

3.
An investigation of succinic acid production from n-paraffin under various culture conditions was carried out with Candida brumptii IFO 0731. Ammonium nitrogen was required for both cell growth and succinic acid production. Favorable culture conditions for succinic acid production were ascertained. The productivity was markedly increased by the additions of CaCO3 and organic nutrients. Under the best condition, the largest quantity of succinic acid production, 23.6 mg/ml, was obtained in a 67% yield from super heavy n-paraffin after 8 days cultivation.  相似文献   

4.
The utilization of hydrocarbons by microorganisms was studied in many fields, but the production of biotin vitamers by hydrocarbon-utilizing bacteria has never been reported.

We have screened many hydrocarbon-utilizing bacteria which produce biotin vitamers in the culture broth. The effects of cultural conditions on biotin vitamers production by strain 5–2, tentatively assigned to the genus Pseudomonas, were studied.

More than 98% of biotin vitamers produced from hydrocarbons by strain 5–2 was chromatographically determined as desthiobiotin. As nitrogen source, natural nutrients were more effective than inorganic nitrogen sources. The production of biotin vitamers was increased under the condition of good aeration. Exogenous pimelic or azelaic acid enhanced biotin vitamers production by strain 5–2.

The production of biotin vitamers from n-alkanes, n-alkenes or glucose by an isolated bacterium, strain 5-2, tentatively assigned to the genus Pseudomonas, was investigated. Among these carbon sources, n-undecane was the most excellent for biotin vitamers production.

The biosynthetic pathway of biotin vitamers, especially desthiobiotin, from n-undecane was also studied. It was found by thin-layer and gas-liquid chromatographical methods that pimelic and azelaic acids were the main acid components in n-undecane culture.

This result, together with previously reported enhancement of biotin vitamers production by these acids, suggests that pimelic and azelaic acids may be the intermediates of biotin vitamers biosynthesis from n-undecane.  相似文献   

5.
Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design “fine-tuned” metabolic engineering strategies in silico that can be implemented directly with available genomic tools.  相似文献   

6.
Metabolic engineering of Saccharomyces cerevisiae for high-level production of aromatic chemicals has received increasing attention in recent years. Tyrosol production from glucose by S. cerevisiae is considered an environmentally sustainable and safe approach. However, the production of tyrosol and salidroside by engineered S. cerevisiae has been reported to be lower than 2 g/L to date. In this study, S. cerevisiae was engineered with a push-pull-restrain strategy to efficiently produce tyrosol and salidroside from glucose. The biosynthetic pathways of ethanol, phenylalanine, and tryptophan were restrained by disrupting PDC1, PHA2, and TRP3. Subsequently, tyrosol biosynthesis was enhanced with a metabolic pull strategy of introducing PcAAS and EcTyrAM53I/A354V. Moreover, a metabolic push strategy was implemented with the heterologous expression of phosphoketolase (Xfpk), and then erythrose 4-phosphate was synthesized simultaneously by two pathways, the Xfpk-based pathway and the pentose phosphate pathway, in S. cerevisiae. Furthermore, the heterologous expression of Xfpk alone in S. cerevisiae efficiently improved tyrosol production compared with the coexpression of Xfpk and phosphotransacetylase. Finally, the tyrosol yield increased by approximately 135-folds, compared with that of parent strain. The total amount of tyrosol and salidroside with glucose fed-batch fermentation was over 10 g/L and reached levels suitable for large-scale production.  相似文献   

7.
The effect of different cultivation temperatures (30 and 37 °C) and pH of the media (5.5, 7.5, 8.5) on the biofilm production was compared in Pseudomonas aeruginosa, Klebsiella pneumoniae, and Vibrio cholerae non-O1 and O1 using the crystal-violet test for estimation of quantitative production of the biofilm. Decrease (46.4–98.4 %) in the biofilm production was observed at 37 °C in 8 of the tested strains (P. aeruginosa three strains, K pneumoniae two, V. cholerae non-O1 two, and V. cholerae O1 one strain) compared with the production at 30 °C. On the other hand, five strains (P. aeruginosa 1, K. pneumoniae 3, V. cholerae non-O1 1) exhibited under these conditions a higher biofilm production (103–143 %). However, this difference was not significant (p = 0.196). Increased pH lead to a higher biofilm production using all media tested. In P. aeruginosa the biofilm production at pH 8.5 was 139–244 %, at pH 7.5 136–164 % in comparison with pH 5.5. Similarly, in K. pneumoniae the biofilm production increased to 151–319 % at pH 8.5 while with the drop of pH to 7.5 the biofilm production was 113–177 % compared with pH 5.5. In V. cholerae non-O1 and O1 the biofilm production reached 204–329 % at pH 8.5, and 123–316 % at pH 7.5 (compared with the production at pH 5.5). An increase in biofilm production represented an average of 169 % (p = 0.001) at pH change from 5.5 to 7.5, with the rise of pH from 5.5 to 8.5 caused an average difference of 229 % (p = 0.001).  相似文献   

8.
The effect of changes in substrate feed rate during fedbatch cultivation was investigated with respect to soluble protein formation and transport of product to the periplasm in Escherichia coli. Production was transcribed from the PmalK promoter; and the cytoplasmic part of the production was compared with production from the PlacUV5 promoter. The fusion protein product, Zb-MalE, was at all times accumulated in the soluble protein fraction except during high-feed-rate production in the cytoplasm. This was due to a substantial degree of proteolysis in all production systems, as shown by the degradation pattern of the product. The product was also further subjected to inclusion body formation. Production in the periplasm resulted in accumulation of the full-length protein; and this production system led to a cellular physiology where the stringent response could be avoided. Furthermore, the secretion could be used to abort the diauxic growth phase resulting from use of the PmalK promoter. At high feed rate, the accumulation of acetic acid, due to overflow metabolism, could furthermore be completely avoided.  相似文献   

9.
Aims: To investigate the transmission of Salmonella spp. between production animals (pigs and cattle) and wildlife on production animal farms in Denmark. Methods and Results: In the winter and summer of 2001 and 2002, 3622 samples were collected from Salmonella-infected and noninfected herds of pigs and cattle and surrounding wildlife. Salmonella was detected in wildlife on farms carrying Salmonella-positive production animals and only during the periods when Salmonella was detected in the production animals. The presence of Salmonella Typhimurium in wild birds significantly correlated to their migration pattern and food preference. Conclusions: Salmonella was transmitted from infected herds of production animals (cattle and pigs) to wildlife that lived amongst or in close proximity to them. Significance and Impact of the Study: Salmonella in animal food products is associated with the occurrence of Salmonella in primary animal production. Strategies to control the introduction and spread of infection should include wildlife management, as the nearby wildlife may act as reservoirs for Salmonella spp. and/or may be passive carriers of the bacteria.  相似文献   

10.
In this paper we studied the conditions for the production of β-glucosidase from T. reesei QM9414 in batch cultures using milled and sieved wheat straw as sole carbon source. High β-glucosidase production in the presence of wheat straw, a more realistic substrate than commercial cellulose, was obtained. The influence of particle size of wheat straw on β-glucosidase production in cell-free, cell and cell-wall extracts was studied. The particle size of wheat straw notably influenced enzyme production in cell and extramycelial extracts but it was less important with respect to the cell wall bound enzyme. β-glucosidase production was studied along of the fermentation. The results suggest a close relation between β-glucosidase from cell extract and extramycelial broth; geneticin levels of inhibition of β-glucosidase biosynthesis in both fractions were similar, a fact that suggests a common origin for the enzyme. Kinetic parameters for β-glucosidase from cell free and cell extracts were Vmax = 0.28 μmol/min/mg, KM = 0.91 mM and Vmax = 0.095 μmol/min/mg, KM = 0.39 mM respectively. Kinetic parameters for β-glucosidase from cell-wall could not be calculated because experimental data did not fit the different monosubstrate equations.  相似文献   

11.
Clover rot, an important disease in European red clover crops, is caused by Sclerotinia trifoliorum or Sclerotinia sclerotiorum. Until today, little is known about the variation in aggressiveness among Sclerotinia isolates from red clover. Aggressiveness has never been correlated with morphological characteristics. Rapidly growing isolates may be more aggressive, but this was never investigated in S. trifoliorum before. Also nothing is known about the link between sclerotia production and aggressiveness. Oxalic acid is an important pathogenicity factor in Sclerotinia species, but its effect on aggressiveness is unknown in S. trifoliorum isolates. For this study, we selected 30 Sclerotinia isolates from 25 locations Europe: 26 S. trifoliorum isolates and 4 S. sclerotiorum isolates from two locations in France (Fr.A and Fr.B). For each isolate, the in vitro growth speed, sclerotia production, oxalate production and aggressiveness were analysed and correlations were estimated between aggressiveness and the other characteristics. Aggressiveness was assessed in vitro on detached leaves and in a greenhouse on young plants. Our isolates differed significantly in growth speed, sclerotia production, oxalate production and aggressiveness. The infections on detached leaves and young plants revealed interaction between isolates and plant genotypes and between isolates and cultivars, but there was no indication that pathotypes exist. In vitro growth speed and in vitro aggressiveness on detached leaves were positively correlated with aggressiveness on young plants, while sclerotia production was negatively correlated with aggressiveness on young plants. These factors can be used as predictors of aggressiveness of Sclerotinia isolates from red clover crops.  相似文献   

12.
The ability of the Rhizobium sp., isolated from the root nodules of the leguminous pulse yielding shrub Cajanus cajan, to produce extracellular polysaccharides (EPS) was checked. A large amount of EPS (1, 128 μg/ml) was produced by the bacteria in yeast extract mannitol medium. Growth and EPS production started simultaneously, but the production reached its maximum level in the stationary phase of growth at 28 h. The EPS production by this Rhizobium sp. was much higher than by many other strains from nodules of Cajanus cajan which took a much longer time to reach maximum EPS production than this strain. The maximum EPS production (2,561 μg/ml) was obtained when the medium was supplemented with mannitol (1%), cetyl pyridinium chloride (2 μg/ml) and KNO3 (0.2%), in which the production was increased by 276% compared to the control. The EPS production rose in the period up to 65 h with increased mannitol concentration. The EPS contained arabinose, xylose and rhamnose monomers. The possible role of rhizobial EPS production in root nodule symbiosis is discussed.  相似文献   

13.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

14.
Summary We applied two methods to measure bacterio-plankton production, the [3H]-thymidine (TTI) and the [3H]-leucine (LEU) incorporation into cold trichloro-acetic acid precipitate. Both methods gave similar results of the distribution of production in time and space (r 2=0.82, n=66). Using empirically determined conversion factors the TTI gave production values from 21 to 125 mg Cm–2 day–1, which are within the range reported earlier from the Southern Ocean. Highest production rates were associated with the open water in the Confluence area (59°S–60°S) and with the Scotia Sea front. Low production rates were recorded from the ice covered areas in the Weddell Sea and in the open Scotia Sea waters. Good correlation on an areal basis was found between bacterioplankton production and other measures of heterotrophy, including ETS (r2=0.93, n=9) and NH4(r2=0.50, n=21). Good correlation was also found between bacterioplankton and phytoplankton production (r2=0.63, n=19). Bacterioplankton production seems to be driven by products from photosynthesis and heterotrophic processes, most likely grazing, which are tightly coupled to autotrophy. Quantitatively, bacterioplankton production was on an average 11 % of net primary production, which is clearly a lower value than the 30% based on a review from temperate freshwater and marine ecosystems, but is comparable with values reported from the spring period in subarctic ecosystems. In comparison with the measurements of ETS, bacterioplankton contribution to community respiration was also lower than predicted from results from temperate ecosystems. We concluded from these results and the results obtained from microcosm experiments (Bjørnsen and Kuparinen 1991b) that the flux of organic matter to eucaryote heterotrophs via bacterioplankton during spring and early summer periods in the Southern Ocean is of considerable, but not of equivalent importance as in temperate waters.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

15.
Nine wells producing from six different reservoirs with salinities ranging from 2.1% to 15.9% were surveyed for presence of surface-active compounds and biosurfactant-producing microbes. Degenerate primers were designed to detect the presence of the surfactin/lichenysin (srfA3/licA3) gene involved in lipopeptide biosurfactant production in members of Bacillus subtilis/licheniformis group and the rhlR gene involved in regulation of rhamnolipid production in pseudomonads. Polymerase chain reaction amplification, cloning, and sequencing confirmed the presence of the srfA3/licA3 genes in brines collected from all nine wells. The presence of B. subtilis/licheniformis strains was confirmed by sequencing two other genes commonly used for taxonomic identification of bacteria, gyrA (gyrase A) and the 16S rRNA gene. Neither rhlR nor 16S rRNA gene related to pseudomonads was detected in any of the brines. Intrinsic levels of surface-active compounds in brines were low or not detected, but biosurfactant production could be stimulated by nutrient addition. Supplementation with a known biosurfactant-producing Bacillus strain together with nutrients increased biosurfactant production. The genetic potential to produce lipopeptide biosurfactants (e.g., srfA3/licA3 gene) is prevalent, and nutrient addition stimulated biosurfactant production in brines from diverse reservoirs, suggesting that a biostimulation approach for biosurfactant-mediated oil recovery may be technically feasible.  相似文献   

16.
The Rhizobium sp. isolated from the root nodules of Clitoria ternatea L., a leguminous twiner, produced a high amount of IAA (16.4 μg/ml) from tryptophan in an unsupplemented basal medium. The production of IAA started simultaneously with the growth and had no different growth and production phase. The growth and production were parallel and increased up to 45–50 h. The IAA production by the Rhizobium sp. was increased by 520% when the medium was supplemented with fructose (1.5%), MnSO4 (1.0 μg/ml), riboflavin (0.10 μg/ml) and Triton X-100 (0.01%). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

17.
The growth rate, birth rate, death rate and production of the cladocera of Lake Kasumigaura were studied. Standing crop of zooplankton seemed to be governed by predation rather than food. Maximum productivity of cladocerans was observed in late August and early September. There were differences in production between sampling stations. The highest production was recorded in the most eutrophic basin, where heavy water blooms of Microcystis aeruginosa occurred. Maximum secondary production coincided with maximum primary production, which was mainly due to M. aeruginosa. Cladocerans probably utilize decomposed or decomposing Microcystis cells and bacteria in summer. Estimates of annual production of cladocerans varied from 4.2 to 13.1 g dry wt · m–3, and annual P:B ratios ranged from 36 to 108. The production of cladocerans in Takahamairi Bay was 2.7% of gross primary production.  相似文献   

18.
Bacillus subtilis and Escherichia coli K12 (both transformed for human leukocyte interferon production) and Escherichia coli B/r and Sporotrichum thermophile (a deuteromycete) were cultivated in submersed culture and the culture fluorescence recorded on-line using a fluorometer. During the cultivation of B. subtilis the signal from the fluorometer correlated with cell density and interferon production and thus could be used for process control (interferon production). However, the culture fluorescence of the other organisms did not increase (S. thermophile), was too weak to be measured with the fluorometer used (E. coli transformed for interferon production), or the signal from the fluorometer was not an accurate measure of the culture fluorescence because of the accumulation of a fluorophor in the culture medium (E. coli B/r).  相似文献   

19.
Photoinduced hydrogen production with Mg chlorophyll-a from Spirulina as a visible and near-IR light photosensitizer by use of three component system consisting of nicotineamide adenine dinucleotide phosphate, reduced form (NADPH) as an electron donor, methylviologen as electron relay reagent and colloidal platinum as hydrogen production catalyst was investigated. After 4 h irradiation, the amount of hydrogen production with Mg chlorophyll-a and MgTPP, which was artificial model compound for chlorophyll, were c.a. 2.7 and 1.8 mol, respectively. When the near-IR light was irradiated, little change of hydrogen production was observed. Thus, the effective visible and near IR light induced hydrogen production system with colloidal platinum was established using Mg chlorophyll-a.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号