首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to detect the product of dnaB gene in B. subtilis, a gene which is involved in the initiation of DNA replication and the formation of the DNA-membrane complex, we synthesized an origopeptide of 15 amino acids which corresponds to a region near the carboxyl-terminal of the gene product, and raised antibody against the synthetic peptide. We have also employed a filter binding assay to measure the predicted DNA binding activity of the product of the dnaB gene, using the plasmid pUB110. The binding activity was detected after fractionation of cell lysates of B. subtilis on sucrose-density gradients. When the active fraction was prepared from a mutant which was temperature-sensitive for the dnaB gene, the DNA binding activity in the fraction showed significant thermolability. Furthermore, the binding activity was inhibited by the purified antibody raised against the synthetic peptide. These results suggest that the product of the dnaB gene does indeed have DNA binding activity, and that the filter binding assay and the antibody can be used for the detection and characterization of the gene product.  相似文献   

2.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

3.
4.
Control of single-strand DNA synthesis in coliphage f1 was studied with the use of mutants which are temperature sensitive in gene 2, a gene essential for phage DNA replication. Cells were infected at a restrictive temperature with such a mutant, and the DNA synthesized after a shift to permissive temperature was examined. When cells were held at 42 °C for ten or more minutes after infection, only single-stranded DNA was synthesized immediately after the shift to permissive temperature. This indicated that the accumulation of a pool of double-stranded, replicative form DNA molecules is not an absolute requirement for the synthesis of single-stranded DNA, although replicative form DNA accumulation precedes single-strand synthesis in cells infected with wild-type phage. Cells infected at restrictive temperature with the mutant phage do not replicate the infecting DNA, but do accumulate a substantial amount of gene 5 protein, a DNA-binding protein essential for single-strand synthesis. It is proposed that this accumulated gene 5 protein, by binding to the limited number of replicating DNA molecules formed following the shift to the permissive temperature, acts to prevent the synthesis of double-stranded replicative form DNA, thus causing the predominant appearance of single strands. This explanation implies an intermediate common to both single and double-stranded DNA synthesis. The kinetics of gene 5 protein synthesis indicates that it is the ratio of the gene 5 protein to replicating DNA molecules which determines whether an intermediate will synthesize double or single-stranded DNA.  相似文献   

5.
dnaB protein of Escherichia coli is an essential replication protein. A missense mutant has been obtained which results in replacement of an arginine residue with cysteine at position 231 of the protein (P. Shrimankar, L. Shortle, and R. Maurer, unpublished data). This mutant displays a dominant-lethal phenotype in strains that are heterodiploid for dnaB. Biochemical analysis of the altered form of dnaB protein revealed that it was inactive in replication in several purified enzyme systems which involve specific and nonspecific primer formation on single-stranded DNAs, and in replication of plasmids containing the E. coli chromosomal origin. Inactivity in replication appeared to be due to its inability to bind to single-stranded DNA. The altered dnaB protein was inhibitory to the activity of wild type dnaB protein in replication by sequestering dnaC protein which is also required for replication. By contrast, it was not inhibitory to dnaB protein in priming of single-stranded DNA by primase in the absence of single-stranded DNA binding protein. Sequestering of dnaC protein into inactive complexes may relate to the dominant-lethal phenotype of this dnaB mutant.  相似文献   

6.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

7.
Effects of dnats genes on the replication of plasmids in Bacillus subtilis   总被引:1,自引:0,他引:1  
An essential region (2.3 kb) for the replication of a low-copy-number plasmid, pBS-2, has been identified and cloned into plasmid pHV60 in Bacillus subtilis. The resultant plasmid, pKW1, and two other plasmids, pC194 (medium copy number) and pTP5 (high copy number), were examined by double radio-labelling and gel electrophoresis to determine which host functions are required for their replication in B. subtilis. Replication of pKW1 requires the functions of most dna genes, in particular dnaB, C, E, F, G and H; pC194 requires only dnaG and H; and pTP5 requires dnaE, F, G and H. Thus dnaG and dnaH are required for the replication of all three plasmids tested, even though each plasmid showed a different spectrum of dependency on other host functions. Because of its greater dependence on host functions and its low copy number, pKW1 should be a useful model with which to investigate the function of host genes in the replication of DNA in B. subtilis. pKW1 should also be a useful shuttle vector for cloning of genes in B. subtilis in cases when high gene dosage might be a problem.  相似文献   

8.
9.
The Escherichia coli dnaJ gene was originally discovered because mutations in it blocked bacteriophage lambda DNA replication. Some of these mutations were subsequently shown to interfere with bacterial growth at high temperature, suggesting that dnaJ is an essential protein for the host as well. The first step in purifying the dnaJ protein was to overproduce it at least 50-fold by subcloning its gene into the pMOB45 runaway plasmid. The second step was the development of an in vitro system to assay for its activity. A Fraction II extract from dnaJ259 mutant bacteria was shown to be unable to replicate lambda dv DNA unless supplemented with an exogenous source of wild-type dnaJ protein. Using this complementation assay we purified the dnaJ protein to homogeneity from the membrane fraction of an overproducing strain of bacteria. The purified dnaJ protein was shown to be a basic (pI 8.5), yet hydrophobic, protein of Mr 37,000 and 76,000 under denaturing and native conditions, respectively, and to exhibit affinity for both single- and double-stranded DNA. Using a partially purified lambda dv replication system dependent on the presence of the lambda O and P initiator proteins and at least the host dnaB, dnaG, dnaJ, dnaK, single-stranded DNA-binding protein, gyrase, RNA polymerase holoenzyme, and DNA polymerase III holoenzyme, we have shown that the dnaJ protein is required at a very early step in the DNA replication process.  相似文献   

10.
DNA-membrane association critical for initiation of DNA replication in Bacillus subtilis can be classified into two types. Type I is salt resistant and dependent on the initiation gene, dnaB, and type II is salt sensitive and independent of the dnaB gene. We found and sequenced two adjacent areas of type II binding within 1% of oriC on the B. subtilis chromosome.  相似文献   

11.
Host dna functions involved in the replication of microvirid phage phiC DNA were investigated in vivo. Although growth of this phage was markedly inhibited even at 35-37 degrees C even in dna+ host, conversion of the infecting single-stranded DNA into the double-stranded parental replicative form (stage I synthesis) occurred normally at 43 degrees C in dna+, dnaA, dnaB, dnaC(D), and dnaE cells. In dnaG mutant, the stage I synthesis was severely inhibited at 43 degrees C but not at 30 degrees C. The stage I replication of phiC DNA was clearly thermosensitive in dnaZ cells incubated in nutrient broth. In Tris-casamino acids-glucose medium, however, the dnaZ mutant sufficiently supported synthesis of the parental replicative form. At 43 degrees C, synthesis of the progeny replicative form DNA (stage II replication) was significantly inhibited even in dna+ cells and was nearly completely blocked in dnaB or dnaC(D) mutant. At 37 degrees C, the stage II replication proceeded normally in dna+ bacteria.  相似文献   

12.
The replication of the bacteriocinogenic plasmid Clo DF13 has been studied in the seven temperature-sensitive Escherichia coli mutants defective in deoxyribonucleic acid (DNA) replication (dnaA-dnaG). Experiments with dna initiation mutants revealed that the replication of the Clo DF13 plasmid depends to a great extent on the host-determined dnaC (dnaD) gene product, but depends slightly on the dnaA gene product. The synthesis of Clo DF13 plasmid DNA also requires the dnaF and dnaG gene products, which are involved in the elongation of chromosomal DNA replication. In contrast, the Clo DF13 plasmid is able to replicate in the dnaB and dnaE elongation mutants at the restrictive temperature. When de novo protein synthesis is inhibited by chloramphenicol in wild-type cells, the Clo DF13 plasmid continues to replicate for at least 12 h, long after chromosomal DNA synthesis has ceased, resulting in an accumulation of Clo DF13 DNA molecules of about 500 copies per cell. After 3 h of chloramphenicol treatment, the Clo DF13 plasmid replicates at a rate approximately five times the rate in the absence of chloramphenicol. Inhibition of protein synthesis by chloramphenicol does not influence the level of Clo DF13 DNA synthesis at the restrictive temperature in the dna mutants, except for the dnaA mutant. Chloramphenicol abolishes the inhibition of Clo DF13 DNA synthesis in the dnaA mutant at the nonpermissive temperature. Under these conditions, Clo DF13 DNA synthesis was slightly stimulated in the first 30 min after the temperature shift, and continued for more than 3 h at an almost uninhibited level.  相似文献   

13.
Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.  相似文献   

14.
The replication of plasmid pBR322 DNA has been reconstituted with purified proteins from Escherichia coli. Initiation of the leading-strand requires RNA polymerase holoenzyme, DNA polymerase I, RNase H, and DNA gyrase. Initiation of the lagging-strand requires the primosomal proteins (the dnaB, dnaC, and dnaG proteins, replication factor Y (protein n') and proteins i, n, and n") and the single-stranded DNA binding protein. DNA polymerase III holoenzyme is required for extensive elongation of the nascent DNA chains. The products of this replication reaction are primarily nonsegregated daughter molecules. However, the addition of small amounts of soluble extract from E. coli results in the completion and segregation of these molecules to give mature form I DNA, suggesting that additional factors are required for this process. Topoisomerase I is necessary to make the replication system specific for pBR322 DNA as a template, indicating that the linking number of the DNA, determined by an equilibrium between the opposing activities of topoisomerase I and DNA gyrase, plays a crucial role in determining the reactivity of the DNA molecule toward initiating DNA replication. The function of the proteins involved in the replication of this closed-circular, double-stranded, superhelical DNA is discussed.  相似文献   

15.
To study the involvement of DNA replication in UV-induced illegitimate recombination, we examined the effect of temperature-sensitive dnaB mutations on illegitimate recombination and found that the frequency of illegitimate recombination was reduced by an elongation-deficient mutation, dnaB14, but not by an initiation-deficient mutation, dnaB252. This result indicates that DNA replication is required for UV-induced illegitimate recombination. In addition, the dnaB14 mutation also affected spontaneous or UV-induced illegitimate recombination enhanced by the recQ mutation. Nucleotide sequence analyses of the recombination junctions showed that DnaB-mediated illegitimate recombination is short homology dependent. Previously, Michel et al. (B. Michel, S. Ehrlich, and M. Uzest, EMBO J. 16:430--438, 1997) showed that thermal treatment of the temperature-sensitive dnaB8 mutant induces double-stranded breaks, implying that induction of illegitimate recombination occurs. To explain the discrepancy between the observations, we propose a model for DnaB function, in which the dnaB mutations may exhibit two types of responses, early and late responses, for double-stranded break formation. In the early response, replication forks stall at damaged DNA, resulting in the formation of double-stranded breaks, and the dnaB14 mutation reduces the double-stranded breaks shortly after temperature shift-up. On the other hand, in the late response, the arrested replication forks mediated by the dnaB8 mutation may induce double-stranded breaks after prolonged incubation.  相似文献   

16.
Ward P  Elias P  Linden RM 《Journal of virology》2003,77(21):11480-11490
In cultured cells, adeno-associated virus (AAV) replication requires coinfection with a helper virus, either adenovirus or herpesvirus. In the absence of helper virus coinfection AAV can integrate its genome site specifically into the AAVS1 region of chromosome 19. Upon subsequent infection with a helper virus, the AAV genome is released from chromosome 19 by a process termed rescue, and productive replication ensues. The AAV genome cloned into a plasmid vector can also serve to initiate productive AAV replication. When such constructs are transfected into cells and those cells are simultaneously or subsequently infected with a helper virus, the AAV genome is released from the plasmid. This process is thought to serve as a model for rescue from the human genomic site. In this report we present a model for rescue of AAV genomes by replication. A hallmark of this model is the production of a partially single-stranded and partially double-stranded molecule. We show that the AAV2 Rep 68 protein, together with the UL30/UL42 herpes simplex virus type 1 DNA polymerase and the UL29 single-strand DNA binding protein ICP8, is sufficient to efficiently and precisely rescue AAV from a plasmid in a way that is dependent on the AAV inverted terminal repeat sequence.  相似文献   

17.
The geometry of replicative form (RF) DNA synthesis of the H-1 parvovirus was studied with the electron microscope using formamide or aqueous variations of the Kleinschmidt spreading procedure. H-1 DNA was isolated from human or hamster cells infected with a temperature-sensitive mutant, ts1, which is deficient in progeny single-stranded DNA synthesis at the restrictive temperature (S.L. Rhode, 1976), thus minimizing possible confusion between RF and progeny DNA replicative intermediates (RIs). The purity of the isolated H-1 DNA, as determined by gel electrophoresis, ethidium bromide staining, autoadiography, and digestion with endo R-EcoRI, was high. H-1 RF DNA'S WERE LINEAR DOUBLE-STRANDED MOLECULES, 1.53 MUM IN LENGTH. H-1 RIs of RF DNA replication were double-stranded, Y-shaped molecules, with the same length as RF DNAs. The replication origin was localized no more than 0.15 genome lengths from one end of the RF DNA, with replication proceeding toward the other end at a uniform rate. Similar RF and RI molecules of dimer size were also observed. The length of H-1 single-stranded DNA extracted from purified virions was measured relative to that of phiX174 and it had a very similar contour length, so that the molecular weight of H-1 single-stranded DNA would be at least 1.48 X 10(6) to 1.59 X 10(6) (Berkowitz and Day, 1974).  相似文献   

18.
A 3' to 5' exonuclease activity is associated with phage 029 DNA polymerase   总被引:3,自引:0,他引:3  
Bacteriophage 029 produces its own DNA polymerase which is encoded by gene 2 [Watabe, K. and Ito, J. (1983) Nucleic Acid Res. 11, 8333]. This 029 DNA polymerase has been purified by phospho-cellulose, DEAE-cellulose, double-stranded DNA cellulose chromatography and glycerol gradient centrifugation. An exonuclease activity associated with the DNA polymerase was found through all the steps of the purification. This nuclease preferably degrades single-stranded DNA from the 3' to the 5' terminus direction, suggesting that the enzyme plays a role for proofreading during DNA replication. While DNA polymerase activity isolated from cells infected with temperature sensitive mutant of gene 2 is thermolabile, the nuclease activity is not significantly reduced at the restrictive temperature.  相似文献   

19.
Protein C23, a predominant nucleolar phosphoprotein and a putative nucleolus organizer protein, was analyzed for its general DNA binding characteristics and for its selectivity in binding plasmid DNAs containing cloned fragments of the genes that code for ribosomal RNA (rDNA). By use of nitrocellulose filter disk assays, the protein bound saturably to nuclear DNA with a relatively high affinity. Binding was maximal at low ionic strength (0-0.1 M KCl) with progressively decreasing binding at or above 0.2 M. In competition assays protein C23 showed a marked preference for linear single-stranded vs. double-stranded DNA and little or no affinity for ribosomal RNA. The relative affinities of rDNA sequences for protein C23 were determined with cloned fragments spanning 15.8 kilobases (kb) of DNA starting approximately 3.7 kb upstream from the initiation site for 45S preribosomal RNA to near the 3' end of the sequence coding for 28S RNA. Of the five linearized plasmids tested, only one (pKW1) was an effective competitor for 32P-labeled nuclear DNA. As measured by the concentration of competing DNA required to achieve 50% competition, pKW1 was approximately 20-fold more effective than the second best competitor. The DNA insert in pKW1 is a 3.5-kb sequence which is located in the nontranscribed spacer region less than 0.5 kb upstream from the initiation site for 45S preribosomal RNA. These results suggest that protein C23 has a preference for binding DNA sequences in the nontranscribed spacer of rDNA.  相似文献   

20.
Bacteriophages G4ev1 and G4bs1 are simple temperature-resistant derivatives of wild-type G4 as demonstrated by restriction endonuclease analyses. The rate of replication of the duplex replicative-form DNA of these phages was normal in dnaB and dnaC mutants of the host, whereas the rate was markedly reduced in a dnaG host mutant at the restrictive temperature. We conclude that G4 duplex DNA replication requires the host cell dnaG protein, but not the dnaB and dnaC proteins. The reasons for the differences between our conclusions and those based on previously published data are documented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号