首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

3.
Chloroplast movement in response to light has been known more than 100 years. Chloroplasts move towards weak light and move away from strong light. Dark-induced relocation, called dark positioning, has also been shown. However, the effects of other stimuli on chloroplast movement have not been well characterized. Here we studied low temperature-induced chloroplast relocation (termed cold positioning) in prothallial cells of the gametophytes of the fern Adiantum capillus-veneris. Under weak light chloroplasts in prothallial cells accumulated along the periclinal wall at 25 degrees C, but they moved towards anticlinal walls when the prothalli were subsequently transferred to 4 degrees C. A temperature shift from 25 degrees to 10 degrees C or lower was enough to induce cold positioning, and high-intensity light enhanced the response. Nuclei also relocated from the periclinal position (a position along periclinal walls) to the anticlinal position (a position along anticlinal walls) under cold temperature, whereas mitochondria did not. Cold positioning was not observed in mutant fern gametophytes defective of the blue light photoreceptor, phototropin 2.  相似文献   

4.
Chloroplast relocation in mesophyll cells of Arabidopsis thaliana was observed microscopically and analyzed by microbeam irradiation. Chloroplasts located along the anticlinal walls in dark-adapted cells. When part of a cell was irradiated with a microbeam of high fluence rate blue light (B) simultaneously with background red light (R) on the whole cell, the chloroplasts moved towards the B-irradiated area, but did not enter the beam. The background R illumination activated cytoplasmic motility as well as chloroplast movement. Without R illumination, there was little chloroplast relocation. In light-adapted cells in which the chloroplasts were spread over the cell surface perpendicular to the incident light, R-illumination had the same effect. Under background R, the chloroplasts moved out of the area irradiated with a B microbeam of 8 or 30 W m(-2) (avoidance response), but chloroplasts outside the beam moved towards the area irradiated with the B microbeam (accumulation response). These results suggest that the signals for accumulation and avoidance responses were generated in a single cell by high fluence rate B. cry1cry2, npq1 and nph1 mutants showed B-induced chloroplast relocation. Both the accumulation and avoidance responses were observed in all the mutants, although in the nph1 mutant, the sensitivity of accumulation movement was slightly lower than that of the wild type. We discuss the possible photoreceptor for B-induced chloroplast relocation.  相似文献   

5.
Sakurai N  Domoto K  Takagi S 《Planta》2005,221(1):66-74
In leaf epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light induces the actin-dependent avoidance response of chloroplasts. By semi-quantitative motion analysis and phalloidin staining, time courses of the blue-light-induced changes in the mode of movement of individual chloroplasts and in the configuration of actin filaments were examined in the presence and absence of a flavoprotein inhibitor, diphenylene iodonium. In dark-adapted cells, short, thick actin bundles seemed to surround each chloroplast, which was kept motionless in the outer periclinal cytoplasm of the cells. After 10 min of irradiation with high-intensity blue light, a rapid, unidirectional movement of chloroplasts was induced, concomitant with the appearance of aggregated, straight actin bundles stretched over the outer periclinal cytoplasm. Diphenylene iodonium inhibited the avoidance response of chloroplasts, apparently by delaying a change in the mode of chloroplast movement from random sway to unidirectional migration, by suppressing the appearance of aggregated, straight actin bundles. In partially irradiated individual cells, redistribution of chloroplasts and reorganization of actin filaments occurred only in the areas exposed to blue light. From the results, we propose that the short, thick actin bundles in the vicinity of chloroplasts function to anchor the chloroplasts in dark-adapted cells, and that the aggregated, straight actin bundles organized under blue-light irradiation provide tracks for unidirectional movement of chloroplasts.Preliminary results of part of the local irradiation study have already been reported in abstract form [N. Sakurai et al. (2002) J Photosci 9:326–328].  相似文献   

6.
Summary Using time-lapse video microscopy, we performed a semiquantitative investigation of the movement of chloroplasts on the cytoplasmic layer that faces the outer periclinal wall (P side) of epidermal cells of leaves of the aquatic angiospermVallisneria gigantea Graebner. Under continuous irradiation with red light (650 nm, 0.41 W/m2), the movement of chloroplasts on the P side was transiently accelerated within 5 min. The increased movement began to decrease at around 20 min and fell below the original level after 40 to 60 min of irradiation with red light. The acceleration and deceleration of movement of chloroplasts on the P side seemed to lead directly to the increase and the subsequent decrease in the rate of migration of chloroplasts from the P side to the anticlinal layers of cytoplasm, which are responsible for the accumulation of chloroplasts on the P side, as we demonstrated previously. In the presence of inhibitors of photosynthesis, the accelerated movement of chloroplasts was maintained for as long as the chloroplasts were irradiated with red light. The rapid acceleration and deceleration of the movement of chloroplasts could be observed repeatedly with sequential irradiation with red and then far-red light (746 nm, 0.14 W/m2). Concomitantly with the loss of motility of chloroplasts on the P side, a dynamic change in the configuration of microfilaments, from a network to a honeycomb, occurred on the P side.Abbreviations APW artificial pond water - A side cytoplasmic layer that faces the anticlinal wall - ATP adenosine triphosphate - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F-actin fibrous actin - FITC fluorescein isothiocyanate - PBS phosphate-buffered saline - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - P side cytoplasmic layer that faces the outer periclinal wall Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

7.
Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1–5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24–36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.  相似文献   

8.
The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.Key words: actin, Arabidopsis, blue light, chloroplast positioning, phototropin, nuclear positioning  相似文献   

9.
In gametophytic cells (prothalli) of the fern Adiantum capillus-veneris, nuclei as well as chloroplasts change their position according to light conditions. Nuclei reside on anticlinal walls in darkness and move to periclinal or anticlinal walls under weak or strong light conditions, respectively. Here we reveal that red light-induced nuclear movement is mediated by neochrome1 (neo1), blue light-induced movement is redundantly mediated by neo1, phototropin2 (phot2) and possibly phot1, and dark positioning of both nuclei and chloroplasts is mediated by phot2. Thus, both the nuclear and chloroplast photorelocation movements share common photoreceptor systems.  相似文献   

10.
Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue‐light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf‐area basis. The same strategy might be used in other plant leaves grown under direct sunlight.  相似文献   

11.
Light-mediated chloroplast movements are common in plants. When leaves of Alocasia brisbanensis (F.M. Bailey) Domin are exposed to dim light, mesophyll chloroplasts spread along the periclinal walls normal to the light, maximizing absorbance. Under high light, the chloroplasts move to anticlinal walls. It has been proposed that movement to the high-light position shortens the diffusion path for CO(2) from the intercellular air spaces to the chloroplasts, thus reducing CO(2) limitation of photosynthesis. To test this hypothesis, we used pulsed photoacoustics to measure oxygen diffusion times as a proxy for CO(2) diffusion in leaf cells. We found no evidence that chloroplast movement to the high-light position enhanced gas diffusion. Times for oxygen diffusion were not shorter in leaves pretreated with white light, which induced chloroplast movement to the high-light position, compared with leaves pretreated with 500 to 700 nm light, which did not induce movement. From the oxygen diffusion time and the diffusion distance from chloroplasts to the intercellular gas space, we calculated an oxygen permeability of 2.25 x 10(-)(6) cm(2) s(-)(1) for leaf cells at 20 degrees C. When leaf temperature was varied from 5 degrees C to 40 degrees C, the permeability for oxygen increased between 5 degrees C and 20 degrees C but changed little between 20 degrees C and 40 degrees C, indicating changes in viscosity or other physical parameters of leaf cells above 20 degrees C. Resistance for CO(2) estimated from oxygen permeability was in good agreement with published values, validating photoacoustics as another way of assessing internal resistances to CO(2) diffusion.  相似文献   

12.
In the cytoplasmic layer that faces the outer periclinal wallin epidermal cells of leaves of the aquatic angiosperm Vallisneriagigantea Graebner, we examined a possible interrelationshipamong the configuration of microfilaments, chloroplast motility,and anchoring of chloroplasts. In dark-adapted cells, microfilamentsare arranged in a network array. During a 10-min incubationin darkness 10 to 20 min after irradiation with red light (650nm, 0.41 W m–2) for 5 min, the number of cells containinga network array decreased substantially while the number ofcells containing microfilaments in a honeycomb array increased.Irradiation with red light rapidly produces an increase in chloroplastmotility, but chloroplast motility declined almost to initiallevels during the 10-min incubation in darkness after the irradiation.Simultaneously, the chloroplasts in these cells became extremelyresistant to centrifugal forces. These effects of red lightwere negated either by far-red light or by the presence of DCMU,and were sensitive to cytochalasin B. It appears, therefore,that microfilaments not only drive the movement of chloroplastsbut also play a crucial role in accumulation of the chloroplastsalong the outer periclinal wall through dynamic changes in theconfiguration under cooperative regulation by PFR and photosynthesis. (Received July 24, 1998; Accepted September 22, 1998)  相似文献   

13.
In epidermal cells of the leaves of the aquatic angiosperm Vallisneria gigantea Graebner, the chloroplasts accumulate in the outer periclinal layer of cytoplasm (P side) under light at low fluence rates. The nature of such intracellular orientation of chloroplasts was investigated in a semiquantitative manner. Time-lapse video microscopy revealed that, while irradiation with red light (650 nm, 0.41 W · m–2) rapidly accelerated the migration of chloroplasts, not only from the anticlinal layers of cytoplasm (A sides) to the P side but also from the P side to the A sides, the increased rate of migration in both directions returned to the control rate upon subsequent irradiation with far-red light (746nm, 0.14W · m–2). These effects of red and far-red light could be observed repeatedly, both in the presence and in the absence of inhibitors of photosynthesis, suggesting the involvement of phytochrome as the photoreceptor. After saturating irradiation with red light, the increased rate of migration of chloroplasts from the P side to the A sides declined more rapidly than the increased rate of migration in the opposite direction. This imbalance in the migration of chloroplasts between the two opposing directions resulted in the accumulation of chloroplasts on the P side. The more rapid decline in the rate of migration of chloroplasts from the P side to the A sides than in the opposite direction was not observed in the presence of an inhibitor of photosynthesis. It appears, therefore, that phytochrome and photosynthetic pigment cooperatively regulate the accumulation of chloroplasts on the P side through modulation of the nature of the movement of the chloroplasts.Abbreviations A side cytoplasmic layer that faces the anticlinal wall - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - P side cytoplasmic layer that faces the outer periclinal wall This work was supported in part by Grants-in-Aid from the Japanese Ministry of Education, Science and Culture to S.T. and R.N. The authors are indebted to the Osaka branch of Kashimura Inc. for their kind cooperation in preparing the GREEN software.  相似文献   

14.
Sugiyama Y  Kadota A 《Plant physiology》2011,155(3):1205-1213
Chloroplasts change their positions in the cell depending on the light conditions. In the dark, chloroplasts in fern prothallia locate along the anticlinal wall (dark position). However, chloroplasts become relocated to the periclinal wall (light position) when the light shines perpendicularly to the prothallia. Red light is effective in inducing this relocation in Adiantum capillus-veneris, and neochrome1 (neo1) has been identified as the red light receptor regulating this movement. Nevertheless, we found here that chloroplasts in neo1 mutants still become relocated from the dark position to the light position under red light. We tested four neo1 mutant alleles (neo1-1, neo1-2, neo1-3, and neo1-4), and all of them showed the red-light-induced chloroplast relocation. Furthermore, chloroplast light positioning under red light occurred also in Pteris vittata, another fern species naturally lacking the neo1-dependent phenomenon. The light positioning of chloroplasts occurred independently of the direction of red light, a response different to that of the neo1-dependent movement. Photosynthesis inhibitors 3-(3,4 dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-isopropyl-6-methyl-p-benzoquinone blocked this movement. Addition of sucrose (Suc) or glucose to the culture medium induced migration of the chloroplasts to the periclinal wall in darkness. Furthermore, Suc could override the effects of 3-(3,4 dichlorophenyl)-1,1-dimethylurea. Interestingly, the same light positioning was evident for nuclei under red light in the neo1 mutant. The nuclear light positioning was also induced in darkness with the addition of Suc or glucose. These results indicate that photosynthesis-dependent nondirectional movement contributes to the light positioning of these organelles in addition to the neo1-dependent directional movement toward light.  相似文献   

15.
Sakai Y  Takagi S 《Planta》2005,221(6):823-830
In epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light (BL) induces the avoidance response of chloroplasts. We examined simultaneous BL-induced changes in the configuration of actin filaments in the cytoplasmic layers that face the outer periclinal wall (P side) and the anticlinal wall (A side). The results clearly showed that dynamic reorganization of the actin cytoskeleton occurs on both sides. Upon BL irradiation, thick, long bundles of actin filaments appeared, concomitant with the directed migration of chloroplasts from the P side to the A side. After 15–20 min of BL irradiation, fine actin bundles on only the A side appeared to associate with chloroplasts that had migrated from the P side. To examine the role of the fine actin bundles, we evaluated the anchorage of chloroplasts by centrifuging living cells. Upon BL irradiation, the resistance of chloroplasts on both the P and A sides to the centrifugal force decreased remarkably. After 20 min of BL irradiation, the resistance of chloroplasts on the A side increased again, but chloroplasts on the P side could still be displaced. The BL-induced recovery of resistance of chloroplasts on the A side was sensitive to photosynthesis inhibitors but insensitive to an inhibitor of flavoproteins. The photosynthesis inhibitors also prevented the fine actin bundles from appearing on the A side under BL irradiation. These results strongly suggest that the BL-induced avoidance response of chloroplasts includes photosynthesis-dependent and actin-dependent anchorage of chloroplasts on the A side of epidermal cells.  相似文献   

16.
Measuring the ratio of the number of photooriented chloroplaststo the total number of chloroplasts, we found that photoorientationof chloroplasts in protonemata of the fern Adiantum capillus-veneriscould be induced by brief irradiation with polarized red light.After irradiation with red light (R) of 3 or 10 min, orientationalmovement was detected as early as 10 min after the irradiation;it continued during the subsequent dark period for 30–60min, after which chloroplasts gradually dispersed again. WhenR-treated protonemata were irradiated briefly with a second10-min pulse of R, 60 min after the onset of the first irradiation,the orientational response of chloroplasts was again observed.Typical red/far-red photoreversibility was apparent in the response,indicating the involvement of phytochrome. By contrast, irradiationwith polarized blue light for 10 min was ineffective, whileirradiation with blue light (B) at the same fluence for a longerperiod of time clearly induced the photoorientation of chloroplasts.It is likely that longterm irradiation is necessary for theresponse mediated by a blue-light receptor. When protonemata were irradiated with far-red light (FR) immediatelyafter R or after a subsequent dark period of 10 min, the magnitudeof the orientational response was smaller and chloroplasts dispersedmore quickly than those exposed to R alone. When FR was appliedat 50 min, when the response to R had reached the maximum level,chloroplasts again dispersed rapidly to their dark positions.These results indicate that PFR not only induces the photoorientationmovement of chloroplasts but also fixes the chloroplasts atthe sites to which they have moved as a result of photoorientation. (Received June 2, 1993; Accepted January 11, 1994)  相似文献   

17.
The photosynthetic mutant, strain 1073, of Lemna paucicostataTorr. (L. perpusilla Hegelm.) which has a block in the electrontransport chain between plastoquinone and cytochrome f is capableof light-induced chloroplast displacement movements. At 8000–14000 lx, chloroplasts of the mutant move from their positionadjacent to the inner periclinal wall of the mesophyll cellsto the anticlinal walls, i.e. along those walls parallel tothe direction of the light. Light does not appear to enhancerespiration of the photosynthetic mutant or of the wild typestrain (6746). These and other results support the idea thatchloroplast displacement in light is not solely the result oflight effects on photosynthesis and respiration. Lemna paucicostata Torr., photosynthetic mutant, phototaxis, chloroplast displacement  相似文献   

18.
Chloroplasts move in a light-dependent manner that can modulate the photosynthetic potential of plant cells. Identification of genes required for light-induced chloroplast movement is beginning to define the molecular machinery that controls these movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that displays attenuated chloroplast movements under intermediate and high light intensities while maintaining a normal movement response under low light intensities. In wild-type plants, fluence rates below 20 micromol m(-2) s(-1) of blue light lead to chloroplast accumulation on the periclinal cell walls, whereas light intensities over 20 micromol m(-2) s(-1) caused chloroplasts to move toward the anticlinal cell walls (avoidance response). However, at light intensities below 75 micromol m(-2) s(-1), chloroplasts in pmi2 leaves move to the periclinal walls; 100 micromol m(-2) s(-1) of blue light is required for chloroplasts in pmi2 to move to the anticlinal cell walls, indicating a shift in the light threshold for the avoidance response in the mutant. The pmi2 mutation has been mapped to a gene that encodes a protein of unknown function with a large coiled-coil domain in the N terminus and a putative P loop. PMI2 shares sequence and structural similarity with PMI15, another unknown protein in Arabidopsis that, when mutated, causes a defect in chloroplast avoidance under high-light intensities.  相似文献   

19.
Organelles change their subcellular positions in response to various environmental conditions. Recently, we reported that cold treatments alter the intracellular position of chloroplasts and nuclei (cold positioning) in the fern Adiantum capillus‐veneris; chloroplasts and nuclei localized to the periclinal cell wall relocated to anticlinal cell wall after cold treatments. To further understand organelle positioning under cold conditions, we studied cold‐induced organelle relocation in the liverwort Marchantia polymorpha L. When sporelings and gemmmalings were treated under low temperature (5 °C), chloroplast cold positioning response was successfully induced both in the sporelings and the gemmmalings of M. polymorpha. Using a genetic transformation, nuclei, mitochondria or peroxisomes were visualized with a fluorescent protein, and the transgenic gemmmalings were incubated under the cold condition. Nuclei and peroxisomes, but not mitochondria, clearly relocated from the periclinal cell wall to the anticlinal cell wall after cold treatments. Our findings suggest that several organelles concurrently change their positions in the liverwort cell to cope with cold temperature.  相似文献   

20.
In most higher plants, chloroplasts move towards the periclinal cell walls in weak blue light (WBL) to increase light harvesting for photosynthesis, and towards the anticlinal walls as an escape reaction, thus avoiding photo-damage in strong blue light (SBL). The photo- receptor(s) triggering these responses have not yet been identified. In this study, the role of zeaxanthin as a blue-light photoreceptor in chloroplast movements was investigated. Time-lapse 3D confocal imaging in Lemna trisulca showed that individual chloroplasts responded to local illumination when one half of the cell was treated with light of different intensity or spectral quality to that received by the other half, or was maintained in darkness. Thus the complete signal perception, transduction and effector system has a high degree of spatial resolution and is consistent with localization of part of the transduction chain in the chloroplasts. Turnover of xanthophylls was determined using HPLC, and a parallel increase was observed between zeaxanthin and chloroplast movements in SBL. Ascorbate stimulated both a transient increase in zeaxanthin levels and chloroplast movement to profile in physiological darkness. Conversely, dithiothreitol blocked zeaxanthin production and responses to SBL and, to a lesser extent, WBL. Norflurazon preferentially inhibited SBL-dependent chloroplast movements. Increases in zeaxanthin were also observed in strong red light (SRL) when no directional chloroplast movements occurred. Thus it appears that a combination of zeaxanthin and blue light is required to trigger responses. Blue light can cause cis-trans isomerization of xanthophylls, thus photo-isomerization may be a critical link in the signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号