首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates.  相似文献   

3.
The complete amino acid sequence of apolipoprotein A-I (apo-A-I) from canine serum high density lipoproteins (HLD) has been determined by automated Edman degradation of the intact protein and proteolytic fragments derived therefrom. The major strategy involved analysis of overlapping sets of peptides generated by cleavage at lysyl residues with Myxobacter protease and by tryptic hydrolysis at arginines in the citraconylated protein derivative. Canine apo-A-I has 232 residues in its single polypeptide chain and its covalent structure is highly homologous to one of the two reported sequences for human apo-A-I. As in the case for the human apoprotein, predictive analysis of the canine apo-A-I sequence suggests that it comprises a series of amphiphilic alpha helices punctuated by a periodic array of prolyl residues. Human HDL contains a second major protein component, apolipoprotein A-II (apo-A-II) that is lacking in HDL from dog serum. The absence of apo-A-II in canine HDL raised the possibility that the apo-A-I from this source might contain within its primary structure sequences related to apo-A-II and thus perform the dual function of both proteins in one. Our analysis proves that canine apo-A-I has all of the structural features of human apo-A-I and that it is not an A-I: A-II hybrid molecule.  相似文献   

4.
5.
Previous studies have revealed the presence of transthyretin (TTR) on lipoproteins. To further address this issue, we fractionated plasma lipoproteins from 9 normal individuals, 10 familial amyloidotic polyneuropathy (FAP) patients, and 19 hyperlipidemic subjects using gel filtration. In the majority of the subjects, as well as in 9 of the 10 FAP patients and 14 of the 19 patients with hyperlipidemia, TTR was detected by ELISA in the high density lipoprotein (HDL) fraction. The presence of TTR in HDL was confirmed by direct sequencing and by immunoblotting; using non-reducing conditions, TTR was found by immunoblotting in a high molecular weight complex, which reacted also for apolipoprotein A-I (apoA-I). The amount of TTR present in HDL (HDL-TTR), as quantified by ELISA corresponded to 1;-2% of total plasma TTR. However, no detectable TTR levels were found in HDL fraction from 6 of the hyperlipidemic subjects. No correlation was found between the lack of TTR in HDL and plasma levels of total, LDL-, or HDL-associated cholesterol as well as levels of apoA-I and total plasma TTR. Ligand binding experiments showed that radiolabeled TTR binds to the HDL fraction of individuals with HDL-TTR but not to the corresponding fractions of individuals devoid of HDL-TTR, suggesting that HDL composition may interfere with TTR binding. The component(s) to which TTR binds in the HDL fraction were investigated. Polyclonal antibody against apoA-I was able to block the interaction of TTR with HDL, suggesting that the interaction of TTR with the HDL particle occurs via apoA-I. This hypothesis was further demonstrated by showing the formation of a complex of TTR with HDL and apoA-I by crosslinking experiments. Furthermore, anti-apoA-I immunoblot under native conditions suggested the existence of differences in HDL particle properties and/or stability between individuals with and without HDL-TTR.  相似文献   

6.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

7.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and a critical element of cholesterol metabolism. To better elucidate the role of the apoA-I structure-function in cholesterol metabolism, the conformation of the apoA-I N terminus (residues 6-98) on nascent HDL was examined by electron paramagnetic resonance (EPR) spectroscopic analysis. A series of 93 apoA-I variants bearing single nitroxide spin label at positions 6-98 was reconstituted onto 9.6-nm HDL particles (rHDL). These particles were subjected to EPR spectral analysis, measuring regional flexibility and side chain solvent accessibility. Secondary structure was elucidated from side-chain mobility and molecular accessibility, wherein two major α-helical domains were localized to residues 6-34 and 50-98. We identified an unstructured segment (residues 35-39) and a β-strand (residues 40-49) between the two helices. Residues 14, 19, 34, 37, 41, and 58 were examined by EPR on 7.8, 8.4, and 9.6 nm rHDL to assess the effect of particle size on the N-terminal structure. Residues 14, 19, and 58 showed no significant rHDL size-dependent spectral or accessibility differences, whereas residues 34, 37, and 41 displayed moderate spectral changes along with substantial rHDL size-dependent differences in molecular accessibility. We have elucidated the secondary structure of the N-terminal domain of apoA-I on 9.6 nm rHDL (residues 6-98) and identified residues in this region that are affected by particle size. We conclude that the inter-helical segment (residues 35-49) plays a role in the adaptation of apoA-I to the particle size of HDL.  相似文献   

8.
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.  相似文献   

9.
10.
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.  相似文献   

11.
The binding of human intermediate density lipoproteins (IDL) to HepG2 cells was studied. We found that human 125I-IDL interact with a binding site of high-affinity (Kd 0.74 micrograms/ml, Bmax 0.049 micrograms/mg cell protein) and a binding site of lower affinity (Kd 86.8 micrograms/ml; Bmax 0.53 micrograms/mg cell protein). The high-affinity binding sites show characteristics of LDL-receptors since they interact with IDL and low-density lipoproteins (LDL) and are calcium dependent. The low-affinity binding sites are calcium-independent and interact with IDL, LDL, high density lipoproteins-3 (HDL3), apolipoprotein (apo) E-liposomes, apoCs-liposomes, apoA-I-liposomes but not with liposomes containing albumin or erythrocyte membrane proteins. Therefore, HepG2 cells have on their surface a binding site that resembles or is identical to the lipoprotein binding site (LBS) that we found on rat liver membranes (Brissette and No?l (1986) J. Biol. Chem. 261, 6847-6852). Internalization, degradation and cholesterol ester selective uptake were determined in the presence or in the absence of a sufficient amount of human HDL3 to abolish the interaction of IDL to the LBS in order to obtain information on the function of this site. Our results suggest that the LBS participates in the internalization of IDL but not in their degradation and that it is responsible for the selective uptake of cholesterol esters of IDL.  相似文献   

12.
Dissociation of apolipoprotein A-I from pig and steer high density lipoproteins (HDL) deficient in apoA-II was determined by exposing native HDL fractions to 6 M guanidine hydrochloride (Gdn-HCl) at 37 degrees C for periods from 5 min to 18 h. Bovine high density lipoprotein (HDL-B) was isolated at d 1.063--1.100 g/ml while porcine high density lipoprotein (HDL-P) was isolated at d 1.125--1.21 g/ml. Incubation for 5 min with Gdn-HCl resulted in a 45 and 3% loss of apo-A-I from HDL-P and HDL-B, respectively. Exposure to the denaturant for 3 h resulted in a 75% loss of apoA-I from HDL-P and a 30% loss from HDL-B. Analytic ultracentrifugation, patterns paralleled the degree of apoA-I dissociation from each HDL species. The initial flotation peak for HDL-P shifted from F degrees 1.20 2.68 to F degrees 1.20 10.75 after 3 h exposure while HDL-B showed only a small shift from F degrees 1.20 8.30 to F degrees 1.20 8.96 after 3 h exposure. HDL-P particle diameter increased 25% after 5 min of Gdn-HCl treatment and large, flattened structures predominated after 3 h. There was no changes in the size of HDL-B after 5 min exposure and only 16% increase in particle diameter after 3 h. The difference in behavior of HDL-B and HDL-P to Gdn-HCl exposure is discussed in terms of differences in apolipoprotein A-I amino acid composition, interaction of apolipoprotein A-I with phospholipids and the possible involvement of the cholesteryl ester core.  相似文献   

13.
Human serum apolipoprotein A-I (apo-A-I), the major protein component of the human serum high density lipoproteins, was studied in aqueous solutions of differing ionic strength and pH by the techniques of sedimentation equilibrium ultracentrifugation and frontal analysis gel chromatography. The ultracentrifugal studies indicate the apo-A-I is a self-associating system that is dependent upon protein concentration, but relatively independent of the nature of the medium. The apparent weight average molecular weights obtained from solutions of initial apo-A-I concentration between 0.2 and 0.9 mg/ml were in the range of 3.0 to 16.7 x 10(4) (monomer molecular weight = 28,014). Of the several models of self-associated examined, that which gave the best theoretical fit was for the monomer-dimertetramer-octamer model. The self-association of apo-A-I in aqueous solutions was further documented by frontal analysis gel chromatography, which not only corroborated the ultracentrifugal results, but also indicated that the multiple species of apo-A-I in solution attain equilibrium rather rapidly. Besides having intrinsic importance, these results indicate that the solution properties of apo-A-I must be established before ligand binding studies are conducted and interpreted.  相似文献   

14.
The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors. Upon storage of serum at 4 degrees C, the immunoreactivity of series 2 Mabs (4H1, 3G10) remained unchanged. However, the immunoreactivity of series 1 Mab 3D4 increased linearly at 38%/day for 4 weeks and by 12 weeks had plateaued at about 280-fold compared to day 1. The immunoreactivity of other series 1 Mabs also increased significantly with time in vitro. This process was partially inhibited in the presence of EDTA and by addition of antioxidants, however, the exact molecular nature of this in vitro alteration of apoA-I antigen was not identified.  相似文献   

15.
For a better definition of the role of human serum apolipoprotein A-I (apo A-I) in high density lipoprotein structure, a systematic investigation was carried out on factors influencing the in vitro association of this apoprotein with lipids obtained from the parent high density lipoprotein (HDL); these lipids include phospholipids, free cholesterol, cholesteryl esters, and triglycerides. Following equilibration, mixtures of apo A-I and lipids in varying stoichiometric amounts were fractionated by sequential flotation, CsCl density gradient ultracentrifugation, or gel-permeation chromatography, and the isolated complexes were characterized by physicochemical means. As defined by operational criteria (flotation at density 1,063 to 1.21 g/ml), only two types of HDL complexes were reassembled; one, reconstituted HDLS, small with a radius of 31 A, and the other, reconstituted HDLL, large with a radius of 39 A. The two types incorporated all of the lipid constituents of native HDL and contained 2 and 3 mol of apo A-I, respectively. A maximal yield of reconstituted HDL (R-HDL) was observed at an initial protein concentration of 0.1 muM, where apo A-I is predominantly monomeric. At increasing protein concentrations, the amount of apo A-I recovered in R-HDL was found to be proportional to the initial concentration of monomer and dimer in solution. The composition and yield of the complexes were independent of ionic strength and pH within the ranges studied. Both simple incubation and cosonication of apo A-I with HDL phospholipids produced complexes of identical composition, although the yeild of complexes was higher with co-sonication. When the comparison of the same methods was extended to mixtures of apo A-I and whole HDL lipids, the results confirmed previous observations that co-sonication is essential for the incorporation of the neutral lipid into the R-HDL complexes. The results indicate that (a) in vitro complexation of apo A-I with lipids is under kinetic control; (b) apo A-I can generate a lipid-protein complex with properties similar to those of the parent lipoprotein; (c) the process requires well defined experimental conditions and, most importantly, the presence in solution of monomers and dimers of apo A-I; (d) the number of apo A-I molecules incorporated into R-HDL determines the size and structure of the reassembled particle. All of these observations strongly support the essential role of apo A-I in the structure of human HDL.  相似文献   

16.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

17.
The effect of fetal bovine serum (FBS) on the secretion of apolipoprotein A-I (apo A-I) by HepG2 cells was studied. The cells incubated with FBS always secreted more apo A-I than the cells incubated with serum-free medium. The changes in the rate of apo A-I secretion were observed within 1 h after addition or depletion of serum. The high-density lipoproteins (HDL) or the lipoprotein-deficient serum (LPDS) obtained from FBS also stimulated apo A-I secretion rapidly to the same level as obtained with FBS. Addition of low-density lipoproteins did not have any effect. The rate of general protein synthesis was not affected by short-term incubations with or without serum or HDL. The rate of apolipoprotein E secretion by these cells did not change significantly, parallel to the changes in apo A-I secretion in the presence or absence of FBS. It is concluded that serum may have a factor that plays a specific role in the regulation of apo A-I secretion by the liver cells and this factor is associated with the HDL fraction.  相似文献   

18.
Apolipoprotein E7 (apoE7) (apoE3 E244K/E245K) is a naturally occurring mutant in humans that is associated with increased plasma lipid levels and accelerated atherosclerosis. It is reported to display defective binding to low density lipoprotein (LDL) receptors, high affinity binding for heparin, and like apoE4, preferential association with very low density lipoproteins (VLDL). There are two potential explanations for the preference of apoE7 for VLDL: lysine mutations, which occur in the major lipid-binding region (residues 244-272) of the carboxy-terminal domain of apoE7, could either directly determine the lipoprotein-binding preference or could interact with negatively charged residues in the amino-terminal domain, resulting in a domain interaction similar to that in apoE4 (interaction of Arg-61 with Glu-255), which is responsible for the apoE4 VLDL preference. To distinguish between these possibilities, we determined the binding preferences of recombinant apoE7 and two amino-terminal domain mutants, apoE7 (E49Q/E50Q) and apoE7 (D65N/E66Q), to VLDL-like emulsion particles. ApoE7 and both mutants displayed a higher preference for the emulsion particles than did apoE3, indicating that the carboxy-terminal lysine mutations in apoE7 are directly responsible for its preference for VLDL. Supporting this conclusion, the carboxy-terminal domain 12-kDa fragment of apoE7 (residues 192;-299) displayed a higher preference for VLDL emulsions than did the wild-type fragment. In addition, lipid-free apoE7 had a higher affinity for heparin than did apoE. However, when apoE7 was complexed with dimyristoylphosphatidylcholine or VLDL emulsions, the affinity difference was eliminated. In contrast to previous studies, we found that apoE7 does not bind defectively to the LDL receptor, as determined in both cell culture and solid-phase assays.We conclude that the two additional lysine residues in the carboxy-terminal domain of apoE7 directly alter its lipid- and heparin-binding affinities. These characteristics of apoE7 could contribute to its association with increased plasma lipid levels and atherosclerosis.  相似文献   

19.
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.  相似文献   

20.
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号