首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies, which, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in an LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.  相似文献   

2.
Neutrophil recruitment to inflammation sites purportedly depends on sequential waves of chemoattractants. Current models propose that leukotriene B(4) (LTB(4)), a secondary chemoattractant secreted by neutrophils in response to primary chemoattractants such as formyl peptides, is important in initiating the inflammation process. In this study we demonstrate that LTB(4) plays a central role in neutrophil activation and migration to formyl peptides. We show that LTB(4) production dramatically amplifies formyl peptide-mediated neutrophil polarization and chemotaxis by regulating specific signaling pathways acting upstream of actin polymerization and MyoII phosphorylation. Importantly, by analyzing the migration of neutrophils isolated from wild-type mice and mice lacking the formyl peptide receptor 1, we demonstrate that LTB(4) acts as a signal to relay information from cell to cell over long distances. Together, our findings imply that LTB(4) is a signal-relay molecule that exquisitely regulates neutrophil chemotaxis to formyl peptides, which are produced at the core of inflammation sites.  相似文献   

3.
15-Hydroxy-eicosatetraenoic acid (15-HETE), a product of arachidonic acid, has no proinflammatory capacity, but can inhibit the formation and the chemotactic response of neutrophils to leukotriene B4 (LTB4), a potent mediator of inflammation. The purpose of the present study was to determine whether intraarticular administration of 15-HETE in carrageenan-induced acute arthritis might decrease the levels of LTB4 in synovial fluid and modify the arthritis. A bilateral acute knee joint arthritis was established in 7 dogs by intraarticular injections of carrageenan every third day. To the right joints, 15-HETE was administered both concomitantly with the carrageenan injections and continuously via an osmotic pump. In samples of synovial fluid obtained on day 0, 3 and 10 PGE2 and LTB4 were determined using reversed phase high performance liquid chromatography combined with radioimmunoassays and neutrophil chemokinesis. In the presence of 15-HETE the clinical severity of arthritis was significantly reduced and the volume of synovial effusate was decreased on an average by 42%. Furthermore, the relative number of neutrophils in histological sections of synovial tissue was decreased by 58%. Intraarticular caragheenan injections induced LTB4 formation, and maximum levels were obtained on day 3 (279.2 +/- 148.2 pg/joint). PGE2 was also present on day 3, but maximum levels were detected on day 10 (9.5 +/- 4.8 ng/joint). In joints injected with both carragheenan and 15-HETE the levels of LTB4 on days 3 and 10 were inhibited by 90% and 83%, respectively. For PGE2 a small but insignificant decrease was found on both day 3 and on day 10. These results show that LTB4 may be an important mediator of acute arthritis induced by carragheenan in dogs, and that intraarticular administration of 15-HETE can modify this arthritis by inhibiting LTB4 formation.  相似文献   

4.
《The Journal of cell biology》1993,120(6):1509-1517
The beta 2 integrins (LFA-1, Mac-1, and p150,95) are critical for many adhesive functions of leukocytes. Although the binding of the IgG- opsonized particles occurs normally in the absence of beta 2 integrins, phagocytosis of IgG-opsonized particles by activated neutrophils (PMN) requires these integrins. This observation suggests a role for beta 2 integrins in phagocytosis subsequent to particle binding. To investigate the mechanism of involvement of beta 2 integrins in IgG- mediated functions, we examined the role of beta 2 integrins in adhesion to immune complex (IC)-coated surfaces. Initial adhesion and spreading on IC-coated surfaces were equivalent in control and beta 2- deficient phagocytes. However, both genetically beta 2-deficient PMN and PMN treated with the anti-beta 2 mAb IB4 subsequently detached from the IC-coated surfaces. To determine whether biochemical consequences of IgG activation were also affected by beta 2 deficiency, LTB4 production in response to Fc receptor ligation was assessed. LTB4 production by beta 2-deficient PMN adherent to IC-coated surfaces was markedly decreased in comparison with control PMN. Importantly, LTB4 production by PMN stimulated with fluid phase heat-aggregated IgG also required the beta 2 integrins, showing that the defect was not a simple consequence of abnormal adhesion. In contrast, superoxide production by IC-adherent PMN was equivalent in control and beta 2-deficient PMN. The initial rises in intracytoplasmic [Ca2+]i in response to aggregated IgG also were unaffected by inhibition of beta 2 integrins. These data show that lack of beta 2 integrins does not inhibit all FcR-dependent signal transduction. Finally, LTB4 production by normal PMN adherent to ICs was inhibited by antibodies to FcRII, but not FcRIII, showing that FcRII ligation was required for this effect. Together these data identify a role for the beta 2 integrins in a signal transduction pathway leading to sustained adhesion and LTB4 production in response to IC. Since both beta 2 integrins and FcRII are required for these effects, the data further suggest cooperation between these receptors in generating PMN activation in response to IC stimulation.  相似文献   

5.
Mono-hydroxy-eicosatetraenoic acids (HETE's) are frequently the principal lipoxygenase-derived products in a number of cell types. This paper describes the development of a selective and sensitive radioimmunoassay procedure for 15-HETE, a metabolite which has previously been shown to be both an activator and inhibitor of leukotriene formation in various cells. Initially, rabbits were immunized with 15-HETE conjugated to bovine serum albumin. After seven months, the anti-plasma showed significant binding of tritiated 15-HETE (40-45% binding with a 1:600 dilution of the anti-plasma) which was displaceable by cold 15-HETE. The sensitivity of the assay was approximately 20 pg. of 15-HETE. The anti-plasma exhibited very little (less than 1%) cross-reactivity with arachidonic acid, 5-, 8-, 9-, 11- and 12-HETE's, HHT, TXB2, PGE2 and 6-Keto-PGF1 alpha. Significant cross-reactivity was observed with 5,15-diHETE (53%), 8, 15-diHETE (6.6%), and several other 15-hydroxy-eicosanoids. Rabbit reticulocytes have a very active 15S-lipoxygenase and converted arachidonic acid (final concentration 7 microM) principally to 15-HETE. Unstimulated reticulocytes were found to release negligible amounts of 15-HETE as determined by radioimmunoassay. Treatment of these cells with the calcium ionophore A23187 (0.16 to 4.0 micrograms/ml) elicited a level of 15-HETE release (8 - 14 ng/ml) that was twenty to forty times less than that obtained with exogenous arachidonic acid (2.5 micrograms/ml). The radioimmunoassay reported here may be useful for identifying factors which stimulate cellular release of 15-HETE and other 15-hydroxy-eicosanoids from endogenous arachidonic acid.  相似文献   

6.
We identified leukotriene B4 (LTB4)/12-hydroxyeicosatetraenoic acid (12-HETE) binding sites in a squamous cell cancer-derived human epidermal cell line. Analysis of the binding data revealed a single class of binding sites with a dissociation constant of 0.16 microM and a Bmax of 3.8 x 10(6) sites per cell. Competitive binding assays with various eicosanoids at 37 degrees C showed nearly equal binding of 12(S)-HETE, 12(R)-HETE and LTB4. 5(S)-HETE and LTB4-analogs bound with lesser affinity. Specific LTB4 binding at 37 degrees C could also be demonstrated in freshly isolated normal human keratinocytes. Since lipoxygenase-derived eicosanoids are thought to play an important role in hyperproliferative and inflammatory skin diseases, the identification of LTB4/12-HETE binding sites in keratinocytes could have implications for the development of new drugs controlling these disease processes.  相似文献   

7.
Human parturition is associated with massive arachidonic acid (AA) mobilization in the amnion, indicating that large amounts of AA-derived eicosanoids are required for parturition. Prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway is the best characterized AA-derived eicosanoid in the amnion which plays a pivotal role in parturition. The existence of any other pivotal AA-derived eicosanoids involved in parturition remains elusive. Here, we screened such eicosanoids in human amnion tissue with AA-targeted metabolomics and studied their role and synthesis in parturition by using human amnion fibroblasts and a mouse model. We found that lipoxygenase (ALOX) pathway-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and its synthetic enzymes ALOX15 and ALOX15B were significantly increased in human amnion at parturition. Although 15(S)-HETE is ineffective on its own, it potently potentiated the activation of NF-κB by inflammatory mediators including lipopolysaccharide, interleukin-1β, and serum amyloid A1, resulting in the amplification of COX-2 expression and PGE2 production in amnion fibroblasts. In turn, we determined that PGE2 induced ALOX15/15B expression and 15(S)-HETE production through its EP2 receptor-coupled PKA pathway, thereby forming a feed-forward loop between 15(S)-HETE and PGE2 production in the amnion at parturition. Our studies in pregnant mice showed that 15(S)-HETE injection induced preterm birth with increased COX-2 and PGE2 abundance in the fetal membranes and placenta. Conclusively, 15(S)-HETE is identified as another crucial parturition-pertinent AA-derived eicosanoid in the amnion, which may form a feed-forward loop with PGE2 in parturition. Interruption of this feed-forward loop may be of therapeutic value for the treatment of preterm birth.  相似文献   

8.
The nociceptin receptor (Noci-R) is a G protein-coupled receptor present in neural tissues and its activation by nociceptin is involved in the processing of pain signals. Here, we report that Noci-R is present and functional on peripheral blood polymorphonuclear leukocytes (PMN). Human PMN express mRNA for Noci-R, its nucleotide sequence determined, and specific binding with [(125)I]-labeled nociceptin gave an apparent K(d) approximately 1.5 nM for this PMN opioid receptor. Nociceptin evoked PMN chemotaxis with maximal activity at 100 pM, without intracellular Ca(2+) mobilization. When injected in murine air pouches, nociceptin elicited leukocyte infiltration in a concentration-dependent fashion. Nociceptin-stimulated PMN infiltration was inhibited by treating mice with a synthetic analog of the aspirin-triggered lipid mediator 15-epi-lipoxin A(4). The present results identify nociceptin as a potent chemoattractant and provide a novel link between the neural and immune systems that are blocked by aspirin-triggered lipid mediators and may be relevant in neurogenic inflammation.  相似文献   

9.
The arachidonic acid metabolite of 12 lipoxygenase, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) promotes metastatic behavior of tumor cells. In this study we set out to identify 12(S)-HETE signaling pathways, and their contribution to cellular functions in A431 epidermoid carcinoma. (1) 12(S)-HETE stimulated phosphotyrosine associated PI3 kinase activity. (2) 12(S)-HETE stimulated ERK1/2 in a PI3 kinase dependent manner. (3) PI3 kinase affected the 12(S)-HETE stimulated Raf/MEK/ERK cascade at the level of MEK. (4) 12(S)-HETE stimulated ERK1/2 via PKCzeta. (5) 12(S)-HETE stimulated cell migration on laminin, which was eliminated by PI3 kinase and cPKC inhibitors, but it was unaffected by inhibition of ERK1/2.  相似文献   

10.
Synthesis of lipoxygenase metabolites of [14C]arachidonic acid by mouse spleen lymphocyte cultures was inhibited by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE) in a dose-dependent manner. In parallel experiments, the influence of 15-HETE on mitogenesis in spleen lymphocyte cultures was examined. 15-HETE at concentrations similar to those which inhibited cellular lipoxygenases progressively inhibited mitogenesis induced by the T-cell mitogen PHA but had no significant effect on the mitogenic response to the B-cell mitogen LPS. The inhibitory response was maximal when 15-HETE was added within 8 hr of exposure to PHA. Several analogs of 15-HETE having progressively fewer double bonds were tested in the same systems. 15-OH,20:3 had approximately the same potency as 15-HETE in inhibiting both mitogenesis and formation of metabolites from [14C]arachidonic acid. 15-OH, 20:2 and 15-OH,20:0 were much less active in either assay. Mitogenesis, induced in spleen cell cultures by the tumor promoter phorbol myristate acetate, was also blocked by 15-HETE. These experiments indicate that lipoxygenase metabolites of arachidonic acid may play an important role in T-lymphocyte blastogenesis and suggest that 15-HETE, via its ability to selectively inhibit cellular lipoxygenases, may function as an endogenous regulator of T-lymphocyte responses.  相似文献   

11.
The effects of high frequency oscillatory ventilation (HFOV) and conventional mechanical ventilation (CMV) on tracheal secretion were compared in 6 anesthetized dogs. Using a double-balloon endotracheal catheter, 5 ml of saline was instilled into an isolated tracheal segment during HFOV and CMV for 10 min respectively. Two eicosanoids, 15-hydroxyeicosatetraenoic acid (15-HETE) and 11-dehydrothromboxane B2 (11-dehydro-TXB2) were measured by radioimmunoassay in each sample. HFOV (stroke volume: 6 ml/kg, f: 10 Hz, bias flow: 5 l/min) and CMV (stroke volume: 12 ml/kg, f: 15/min) were performed in random sequence and achieved comparable gas exchange. The concentration of 15-HETE in tracheal fluid during HFOV (87 +/- 67 pg/ml) was decreased to less than half of that during CMV (286 +/- 184 pg/ml, P less than 0.05), while there was no significant change of 11-dehydro-TXB2 either in tracheal fluid or in plasma. This reduction of 15-HETE was tended to be enhanced by vagotomy (HFOV: 42 +/- 14, CMV: 120 +/- 103 pg/ml) with the concentration ratio of CMV/HFOV remaining unchanged. HFOV may provide hitherto unrecognized advantage over CMV by reducing airway secretion of 15-HETE, a potent inflammatory mediator.  相似文献   

12.
13.
Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A(4) (LXA(4)) and 15-epi-LXA(4) (i.e., 15(R)-LXA(4) or aspirin-triggered LXA(4)) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B(4), with the maximum inhibition ( approximately 50% reduction) obtained at 1 nM LXA(4). At higher concentrations, 15-epi-LXA(4) proved more potent than LXA(4) as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA(4) and 15-epi-LXA(4) markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA(4) was more active than LXA(4) at "stopping" migration across epithelial cells. Differences in potency existed between LXA(4) and 15-epi-LXA(4) as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA(4) and 15-epi-LXA(4) as free acids activate recombinant human LXA(4) receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA(4) proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA(4) and 15-epi-LXA(4) for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.  相似文献   

14.
Several studies have shown that human and murine hemozoin-fed phagocytes are functionally impaired. Unpurified hemozoin contains unspecifically attached unsaturated fatty acids such as arachidonic and linolenic acids. The presence in unpurified hemozoin of large quantities of ferric heme with small amounts of free iron makes hemozoin a generator of oxidative radicals capable of forming lipoperoxides or other breakdown products from polyunsaturated fatty acids. Here we show that delipidized hemozoin had reduced toxicity to monocytes. Phorbol myristate acetate (PMA)-elicited burst was poorly affected by delipidized hemozoin (ca. 17% and 21% burst inhibition by delipidized hemozoin vs ca. 75% and 65% burst inhibition by native hemozoin at 20 min or 17 h post-phagocytosis, respectively). Analysis of the lipid fraction isolated from native hemozoin by HPLC and chiral-phase HPLC showed equimolar amounts of 15(R)- and 15(S)-HETE (HETE, 15-hydroxy-6,8,11,13-eicosatetraenoic acid), most likely by-products of non-enzymatic peroxidation of arachidonic acid. The biologically active isomer, 15(S)-HETE, the product of 15-lipoxygenase, is a powerful mediator of inflammation and the effector of a large number of bioactions. 15(R,S)-HETE was found in native hemozoin (0.24 millimole/mole hemozoin heme), in supernatants of hemozoin-fed monocytes (87 nMol) and in hemozoin-fed monocytes (9.6 microMol). Approximately 84% of 15-HETE attached to hemozoin was in the esterified form. A large preponderance of esterified over free 15-HETE was also noted in supernatants of hemozoin-fed monocytes and in hemozoin-fed monocytes. In the latter cells, remarkable levels of the substance were attained. A dose-dependent curve of inhibition of PMA-elicited oxidative burst was observed. Assuming homogenuous distribution of 15-HETE in hemozoin-fed monocytes, 15(S)-HETE concentrations measured in hemozoin-fed monocytes (8 muMol) would bring about ca. 85% inhibition of PMA-elicited burst. In conclusion, derivatives of lipoperoxidation of unsaturated fatty acids such as 4-hydroxynonenal, 15-HETE and others now under study, appear to be relevant causes of hemozoin toxicity.  相似文献   

15.
In this study we have investigated the role of extracellular ATP on thrombin induced-platelet aggregation (TIPA) in washed human platelets. ATP inhibited TIPA in a dose-dependent manner and this inhibition was abolished by apyrase but not by adenosine deaminase (ADA) and it was reversed by extracellular magnesium. Antagonists of P2Y1 and P2Y12 receptors had no effect on this inhibition suggesting that a P2X receptor controlled ATP-mediated TIPA inhibition. ATP also blocked inositol phosphates (IP1, IP2, IP3) generation and [Ca2+]i mobilization induced by thrombin. Thrombin reduced cAMP levels which were restored in the presence of ATP. SQ-22536, an adenylate cyclase (AC) inhibitor, partially reduced the inhibition exerted by ATP on TIPA. 12-lipoxygenase (12-LO) inhibitors, nordihidroguaretic acid (NDGA) and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE), strongly prevented ATP-mediated TIPA inhibition. Additionally, ATP inhibited the increase of 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE) induced by thrombin. Pretreatment with both SQ-22536 and NDGA almost completely abolished ATP-mediated TIPA inhibition. Our results describe for the first time that ATP implicates both AC and 12-LO pathways in the inhibition of human platelets aggregation in response to agonists.  相似文献   

16.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

17.
12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE) enhances tumor cell adhesion to endothelial cells [Honn et al. (1988) Proc. Soc. Exp. Biol. Med. 189, 130-135]. The effect is correlated to surface expression of an integrin receptor, GpIIb/IIIa. Here, we describe evidence for high-affinity binding of 12(S)-HETE to Lewis lung carcinoma cells. Scatchard plot analyses indicated a single class of sites with apparent Kd and Bmax values of 0.44 nM and 66,000 sites per cell, respectively. Competition experiments with unlabeled compounds shod d that the binding was reversible and saturable as well as stereo- and regiospecific. The 12(S)-HETE binding, demonstrated here, might be an important step in a series of events controlling surface expression of integrin receptors.  相似文献   

18.
Glycoprotein G (gG) of alphaherpesviruses has been described to function as a viral chemokine-binding protein (vCKBP). More recently, mutant viruses devoid of gG have been shown to result in increased virulence, but it remained unclear whether the potential of gG to serve as a vCKBP is responsible for this observation. In this study, we used equine herpesvirus type 1 (EHV-1) as a model to study the pathophysiological importance of vCKBP activity. First, in vitro chemotaxis assays studying migration of immune cells, an important function of chemokines, were established. In such assays, supernatants of EHV-1-infected cells significantly inhibited IL-8-induced chemotaxis of equine neutrophils. Identification of gG as the responsible vCKBP was achieved by repeating similar experiments with supernatants from cells infected with a gG-negative mutant, which were unable to alter IL-8-induced equine neutrophil migration. Furthermore, rEHV-1 gG was able to significantly reduce neutrophil migration, establishing gG as a bona fide vCKBP. Second, and importantly, in vivo analyses in a murine model of EHV-1 infection showed that neutrophil migration in the target organ lung was significantly reduced in the presence of gG. In summary, we demonstrate for the first time that EHV-1 gG not only binds to chemokines but is also capable of inhibiting their chemotactic function both in vitro and in vivo, thereby contributing to viral pathogenesis and virulence.  相似文献   

19.
Human endothelial cell monolayers were grown on nucleopore filters, and used to partition the two halves of a modified Boyden chamber. Human neutrophil chemotaxis through the monolayer was studied in response to leukotriene B4 and acetyl glyceryl ether phosphorylcholine (PAF-acether). Both leukotriene B4 and PAF-acether concentration-dependently stimulated neutrophil chemotaxis through intact monolayer. The biologically inactive lyso-PAF, and leukotriene C4 and D4 were inactive as chemotactic agents. Leukotriene A4 was weakly chemotactic. In the absence of chemotaxin, little penetration of the monolayer by neutrophils was observed. Agents that elevate neutrophil cyclic AMP levels inhibit both leukotriene B4 and PAF-acether-stimulated chemotaxis through the endothelial cell monolayer. The specific 5-lipoxygenase inhibitor, 6,8-de-epoxy-6,9-(phenylimino) delta 6,8-prostaglandin I1 (U-60257), inhibits PAF-acether, but not leukotriene B4-mediated chemotaxis. These data suggest that an intact 5-lipoxygenase may be required for normal PAF-acether-mediated chemotaxis, but leukotriene B4-mediated chemotaxis is independent of 5-lipoxygenase activity. This system may prove to be a useful model for the study of neutrophil-endothelial cell interactions.  相似文献   

20.
Structural requirements for chemotactic activity of leukotriene B4 (LTB4)   总被引:3,自引:0,他引:3  
LTB4 (5s, 12R dihdroxy-6, 14-CIS-8, 10-trans-eicosatetraenoic acid) formed in activated neutrophils by lipoxygenation of arachidonic acid is an extremely potent chemotaxin. We examined structural requirements for chemotactic and aggregatory activity of the ligand using synthetic LTB4 and several of its isomers. Additionally we examined the potency of two analogs, nor- and homo-LTB4. Dose response curves for neutrophil chemotaxis to these compounds were obtained using a modified Boyden chamber. The mean distance cells moved into the filter was determined after 30 minutes. Peak chemotactic activity of LTB4 was at 10(-7)M. At higher concentrations, chemotactic activity was decreased. The shape of the dose response curve was similar to that of FMLP except that maximum chemotaxis to LTB4 was consistently greater than chemotaxis to FMLP. A mixture of the two epimers at c-5 and c-12 shifted the response curve to the right but did not lower maximum activity. Increasing or decreasing the chain by one carbon between the first hydroxyl group and the carboxyl group also shifted the response curve to the right without lowering maximal activity. Changing the 6 double bond from cis to trans has a greater effect. Activity was only detectable at high concentrations and maximum activity achieved was less than 50% that of LTB4. Thus the chain length between the carboxyl and C-5 hydroxyl groups, the c-5 and c-12 absolute stereochemistry and the stereochemistry of the delta6 double bond are all important structural features for chemotactic activity with delta6 stereochemistry apparently having the greatest contribution. The relative potencies of these compounds in inducing aggregation were comparable to their chemotactic potencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号