首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aequorin, a Ca(II)-sensitive bioluminescent protein from jellyfish, emits light at 469 nm from an excited state of a substituted pyrazine (oxyluciferin) which results from the oxidation of a chromophore molecule that is noncovalently bound to the protein. The chromophore is oxidized when Ca(II) or other activating metal ions are bound by aequorin. In the absence of Ca(II), spontaneous emission of light, referred to as Ca(II)-independent light emission, occurs at a rate less than 10(-6) of that for Ca(II)-induced emission. Proton nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence were used to study structural changes of aequorin accompanying Ca(II)-independent light emission. Time course studies by 1H NMR and CD demonstrate that as a result of Ca(II)-independent light emission, aequorin progressively changes from a rigid, fully active form showing little segmental mobility to a practically unfolded, discharged (i.e., inactive) form in which a number of amino acid residues are significantly mobile. This slow discharged protein (SDP) is distinct in nature and conformation from aequorin which has been discharged by Ca(II), i.e., the blue fluorescent protein. The rate of Ca(II)-independent discharge of aequorin is substantially reduced in the presence of excess Mg(II); the time constant for inactivation at 5 degrees C is 30 days with no Mg(II) present and 70 days with Mg(II) present. The NMR spectra are nearly identical at a given stage of inactivation whether or not Mg(II) is present. Oxyluciferin remains bound to SDP. If it is removed, however, by column chromatography, the resulting apo-SDP partially refolds, and the segmental mobility acquired in the formation of SDP is significantly attenuated particularly for some of the aromatic amino acid residues.  相似文献   

2.
Cation binding at 5 degrees C by aequorin, a bioluminescent protein from the jellyfish Aequorea victoria, was examined by means of Mn(II) EPR. The bioluminescence of aequorin is triggered by Ca(II), as well as by trivalent lanthanides, and is inhibited by Mg(II) and Mn(II). Three EF-hand Ca(II)-binding domains have been identified in the aequorin amino acid sequence. In the work reported here, active native aequorin was found to have a single tight binding site for Mn(II) with an association constant of 0.566 microM-1. Ca(II) and La(III) competed for the Mn(II) site with association constants of 1.92 microM-1 and 1.38 microM-1, respectively. The affinity of Ca(II) and La(III) for their two other (presumed) sites on aequorin was an order of magnitude less than their affinity for the Mn(II) site. Mg(II) competed for the Mn(II) site as well but with a much smaller association constant of 0.0109 microM-1. Ca(II)-independent discharged aequorin did not bind Mn(II) to a significant degree. Conjectures on the location of the Mn(II) site in the aequorin amino acid sequence and on the relationship between the binding parameters of the cations and their influence on aequorin activity are given.  相似文献   

3.
The surface accessibility of the histidine, tyrosine, and tryptophan residues of Lactobacillus casei dihydrofolate reductase has been determined from 360-MHz 1H photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR experiments. In the absence of ligands, four (or perhaps five) of the seven histidine residues and at least one of the four tryptophan residues are accessible to a flavin dye molecule. One of the five tyrosine residues is also slightly accessible. Of the accessible histidine residues, one becomes inaccessible on the binding of NADP+ and one on the binding of p-aminobenzoyl glutamate. These have been assigned to residues which interact directly with these two ligands. One histidine residue (probably His-22) shows an increase in accessibility on addition of folate or methotrexate to the enzyme . NADP+ complex. In addition, the binding of several ligands, notably trimethoprim, leads to an increase in the accessibility of a tryptophan residue. This is clear evidence for ligand-induced conformational changes in dihydrofolate reductase and allows us to identify some of the residues involved.  相似文献   

4.
Absorption and fluorescence properties of VU-9 calmodulin, an engineered calmodulin in which a tryptophan residue has been introduced in position 99, have been investigated. Tryptophan 99 fluoresces with a maximum around 348 nm and is easily quenched by fluorescence quenchers such as acrylamide, indicating that the chromophore is in a polar environment and well exposed to the solvent, a location which has been reported previously for tyrosine 99 in mammalian calmodulin [Kilhoffer, M. C., Demaille, J. G., & Gérard, D. (1981) Biochemistry 20, 4407-4414]. The quantum yields of tryptophan 99 were found to be 0.19 in the absence of calcium and 0.15 in its presence. These values indicate that the chromophore is in a particular microenvironment where it is protected from the quenching mechanisms normally occurring in proteins. Steady-state fluorescence polarization measurements indicate that the protein exhibits segmental mobility both in the absence and in the presence of calcium. Binding of calcium decreases the mobility of the chromophore, a good indication for a rigidification of the protein structure. A quite rigid structure of at least the carboxy-terminal part of VU-9 calmodulin in the presence of Ca2+ is also suggested by F?rster energy-transfer measurements.  相似文献   

5.
The detergent cetyltrimethylammonium bromide (CTAB) was used as a perturbant to study protein structure. Low concentrations of CTAB induced difference spectra for Ac-Trp-OEt and Ac-Tyr-OEt. The delta epsilonM values at their difference maxima were found to be 1300 at 292 nm for Ac-Trp-OEt and 400 at 287 for Ac-Tyr-OEt. These values were used to determine the number of tyrosine residues exposed in tropomyosin and troponin C, as well as the tyrosine and tryptophan residues exposed in troponin I and troponin T. In tropomyosin and troponin C all of the tyorosine residues were accessible to detergent. For TN-T, three of four tyrosines were free while the tryptophan residues were only partially exposed. In the case of TN-I both tyrosines were fully exposed but again evidence was obtained for a partially buried tryptophan chromophore. The stability of these proteins to CTAB was studies by measuring the far-uv circular dichroism spectra. Tropomyosin was quite sensitive to detergent and suffered a 60% loss in ellipticity at the concentration of CTAB used. The troponins, on the other hand, were affected to a lesser extent.  相似文献   

6.
Fluorescence quenching of tryptophan residues in egg-white riboflavin-binding protein by two typical quenchers (charged iodide and uncharged acrylamide) reveals acid-induced changes of protein conformation. At neutralpH, acrylamide flow in macromolecule, (i.e., the quenching effect) is decisive; tryptophan residue accessibility for iodide is small. At lowpH, some tryptophan residues are exposed to the protein surface and become more accessible to iodide. In contrast, acrylamide is less able to permeate this conformational state of RBP. Fluorescence of tryptophan residues in riboflavin-RBP complex and chemically N-bromosucinimide-modified RBP was quenched by iodide and acrylamide.  相似文献   

7.
M M Snel  R Kaptein  B de Kruijff 《Biochemistry》1991,30(14):3387-3395
The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization 1H nuclear magnetic resonance (CIDNP 1H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional 1H NMR, yielded pK(a)'s of 5.9 +/- 0.1 and 6.2 +/- 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pK(a) of 8.1 +/- 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle.  相似文献   

8.
Photo-chemically induced dynamic nuclear polarization (CIDNP)-NMR spectroscopy at 360 MHz has been used to investigate pH-induced conformational transitions in mouse epidermal growth factor. At about pH 9, all five tyrosine residues and both tryptophan residues are, to various extents, solvent-exposed, while the His-22 residue is buried in the protein matrix. Tyr-13 is the least exposed of the tyrosine residues and also the most immobilized. As the pH is decreased to 5.9, the tryptophan residues gradually become less exposed, while the Tyr-13 residue becomes internalized in the protein. These data suggest that the C-terminus and part of the N-terminal structural domain are affected by a conformational transition in mouse epidermal growth factor occurring between pH 6 and 8 via breakage of the His-22 inter-residue linkage. Above pH 9, a decreased photo-CIDNP effect is evident for both tryptophans and for Tyr-10 and Try-13; this information suggests that a second conformational change takes place at basic pH, which may simply be incipient denaturation.  相似文献   

9.
M C Kilhoffer  D Gérard 《Biochemistry》1985,24(20):5653-5660
The fluorescence characteristics of brevin and the effects of Ca2+ on the protein conformation were fully investigated. Brevin contains 18 tryptophans and 27 tyrosines. Analysis of the fluorescence spectra and the accessibility to quenching molecules indicate that the emitting tryptophans are located in a hydrophobic environment (lambda max = 324 nm) close to the protein surface. In native brevin, tyrosyl residues do not contribute to the fluorescence emission. Partial quenching of these chromophores has to be attributed to tyrosine----tryptophan resonance energy transfer which is highly efficient. The effect of brevin on actin polymerization has been shown to be Ca2+ sensitive [Harris, D. A., & Schwartz, J. H. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6798-6802; Thorstensson, R., Utter, G., & Norberg, R. (1982) Eur. J. Biochem. 126, 11-16; Wilkins, J. A., Schwartz, J. H. & Harris, D. A. (1983) Cell Biol. Int. Rep. 7, 1097-1104; Harris, H. E., & Weeds, A. G. (1983) Biochemistry 22, 2728-2741] and brevin binding to hydrophobic matrices to be Ca2+ dependent (Z. Soua, personal communication). Ca2+ binding to brevin decreases the tryptophan fluorescence polarization degree (without affecting the excited-state lifetime), which suggests a higher chromophore mobility. This effect may be partly related to the slight unshielding of the tryptophan residues observed in fluorescence quenching experiments. Moreover, the reactivity of brevin sulfhydryl groups toward 5,5'-dithiobis(2-nitrobenzoic acid) increases in the presence of Ca2+. On the other hand, fluorescence spectra, quantum yields, excited-state lifetimes, and thermostability remain unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
K Koga  L J Berliner 《Biochemistry》1985,24(25):7257-7262
The proton nuclear Overhauser effects of bovine alpha-lactalbumin were studied at 200 MHz by irradiation of an upfield ring current shifted methylene at -2.45 ppm (assigned to Ile-95) and two aromatic protons, Tyr-103 (8.36 ppm) and Trp-60 (5.85 ppm). The experimental results were consistent with a putative three-dimensional alpha-lactalbumin model [Warne, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782], which predicted the close proximity of Ile-95, Tyr-103, Trp-60, and Trp-104. Several of the assignments correlated with those previously made from chemically induced dynamic nuclear polarization experiments [Berliner, L. J., & Kaptein, R. (1981) Biochemistry 20, 799-807]. Subtle differences in the structure of this hydrophobic box region in alpha-lactalbumin were found between the Ca(II) and apo forms of the protein. The existence of this "hydrophobic box" in alpha-lactalbumin was strikingly similar to that in lysozyme, as verified in solution.  相似文献   

11.
alpha-Lactalbumin (alpha-LA) is a calcium binding protein that also binds Mn(II), lanthanide ions, A1(III), Zn(II), Co(II). The structural implications of cation binding were studied by high-resolution proton (200 MHz) NMR and photochemically induced dynamic nuclear polarization (CIDNP) spectroscopy. Marked changes were observed in the NMR spectra of the apoprotein upon addition of a stoichiometric amount of calcium to yield Ca(II)-alpha-LA, manifested particularly in ring current shifted aliphatic peaks and in several shifts in the aromatic region, all of which were under slow exchange conditions. The CIDNP results showed that two surface-accessible tyrosine residues, assigned as Tyr-18 and -36, became inaccessible to the solvent upon addition of 1:1 Ca(II) to apo-alpha-lactalbumin, while Tyr-103 and Trp-104 remained completely accessible in both conformers. The proton NMR spectra of apo-alpha-LA and A1(III)-alpha-LA were extremely similar, which was also consistent with intrinsic fluorescence results [Murakami, K., & Berliner, L. J. (1983) Biochemistry 22, 3370-3374]. The paramagnetic cation Mn(II) bound to the strong calcium binding site on apo-alpha-LA but also to the weak secondary Ca(II) binding site(s) on Ca(II)-alpha-LA. It was also found that Co(II) bound to some secondary sites on Ca(II)-alpha-LA that overlapped the weak calcium site. All of the lanthanide shift reagents [Pr(III), Eu(III), Tb(III), Dy(III), Tm(III), Yb(III)] bound under slow exchange conditions; their relative affinities for apo-alpha-lactalbumin from competitive binding experiments were Dy(III), Tb(III), and Pr(III) greater than Ca(II) greater than Yb(III).  相似文献   

12.
Chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance phenomenon that can be used to probe the solvent-accessibility of tryptophan, tyrosine, and histidine residues in proteins by means of laser-induced photochemical reactions, resulting in significant enhancement of NMR signals. CIDNP offers good sensitivity as a surface probe of protein structure and is particularly powerful in time-resolved NMR measurements. Real-time, rapid-injection protein refolding experiments permit the observation of changes in the accessibility of specific residues during the folding process. CIDNP pulse-labeling gives information on the accessibility of residues in partially structured proteins (e.g., molten globule states) whose NMR spectra are broad and poorly resolved. Heteronuclear two-dimensional (15)N-(1)H CIDNP techniques allow identification of surface-accessible residues with improved resolution and sensitivity. These methods offer residue-specific structural and kinetic information on transient folding intermediates and other partially folded states of proteins that are not readily available from more routine NMR techniques.  相似文献   

13.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

14.
The states of tryptophan residues in castor bean hemagglutinin (CBH) were analyzed by solvent perturbation studies employing ultraviolet difference spectroscopy. Eight out of 22 tryptophan residues in CBH were exposed to ethylene glycol and glycerol, suggesting that the remaining 14 tryptophan residues are buried in the interior of the CBH molecule. The fraction of tryptophan residues accessible to the perturbant decreased with increase in the molecular size of the perturbant, and only 2 tryptophan residues were exposed to polyethylene glycol 600. Upon binding with raffinose, 2 tryptophan residues were shielded from the perturbing effect of the solvent, and binding of lactose reduced the number of tryptophan residues accessible to the perturbant by 1 mol per mol of protein. Binding of galactose, however, did not change the accessibility of tryptophan to the perturbant. On the other hand, the accessibility of tyrosine to the perturbant remained unchanged after binding with raffinose and lactose, suggesting that tyrosine is not directly involved in the saccharide binding of CBH. Based on these results, it is proposed that one tryptophan residue at the saccharide-binding site on each B-chain of CBH lies on the surface of the protein molecule and is located at a subsite which is accessible to a glucopyranoside moiety in the lactose molecule or a glycopyranosyl-fructofuranosyl moiety in the raffinose molecule, whereas such a residue is not present at the galactopyranoside-recognition site.  相似文献   

15.
The circular polarization of the luminescence of a chromophore, in addition to its circular dichroism and optical rotatory dispersion, is a manifestation of its asymmetry. In the study of proteins, the circular polarization of luminescence yields more specific information than circular dichroism or optical rotatory dispersion since nonfluorescent chromophores do not contribute, and the spectra of the tyrosine and the tryptophan residues are much better resolved in emission than in absorption. The circular polarization of the fluorescence of the tyrosine and tryptophan residues in derivatives of subtilisin Carlsberg and subtilisin Novo were indeed resolved in this study. The tyrosine residues in the Carlsberg protein, and both tyrosine and tryptophan residues in the Novo protein, were found to be heterogeneous with respect to their optical activity and emission spectra. Changes in the environment of the emitting tyrosine residues in both proteins and in the tryptophan residues in the Novo protein were found on changing the pH from 5.0 to 8.3. The pH dependence of the enzymatic activity of these proteins may thus be due, at least in part, to conformational changes in the molecules. Fluorescence circular polarization also revealed that covalently bound inhibitors at the active site of subtilisin Novo affect the environment of the emitting aromatic side chains, presumably via changes in conformation.  相似文献   

16.
Aequorin is one of several photoproteins that emits visible light upon binding to calcium ions. It has been widely used as a Ca(2+)-indicator and as an alternative highly sensitive bioluminescent label in binding assays. The apoprotein of aequorin binds an imidazopyrazine compound (coelenterazine) and molecular oxygen to form a stable photoprotein complex. Upon addition of calcium, the photoprotein undergoes a conformational change leading to the oxidation of the chromophore with the release of CO(2) and blue light. To gain more information of structure-function relationships within the photoprotein that will aid in the design of mutants suitable for site-specific conjugation and immobilization, polymerase chain reaction (PCR)-based site-directed mutagenesis was employed to produce five different aequorin mutants. The five mutants included a cysteine-free mutant and four other mutants with single cysteine residues at selected positions within the protein. The aequorin mutants exhibited different bioluminescence emission characteristics with two mutants showing a decrease in relative light production in comparison to the cysteine-free mutant. Additionally, circular dichroism (CD) spectra revealed that the single amino acid substitutions made for two of the aequorin mutants did alter their secondary structures.  相似文献   

17.
The regulatory role of Arg283 in the autoinhibitory domain of Ca2+/calmodulin-dependent protein kinase II was investigated using substituted inhibitory synthetic peptides and site-directed mutation of the expressed kinase. In the synthetic peptide corresponding to the autoinhibitory domain (residues 281-309) of Ca2+/calmodulin-dependent protein kinase II, substitution of Arg283 by other residues increased the IC50 values of the peptides in the following order: Arg much less than Lys much less than Gln much less than Glu. Site-directed mutations of Arg283 to glutamic acid and glutamine in the kinase alpha subunit cDNA were transcribed and translated in vitro. The expressed enzymes had the same total kinase activities, determined in the presence of Ca2+/CaM, but the Glu283 mutant had a slightly higher Ca2(+)-independent kinase activity (5.46 +/- 0.88%) compared to the wild-type Arg283 (1.86 +/- 0.71%) and the Gln283 mutant (2.15 +/- 0.60%). When the expressed kinases were subjected to limited autophosphorylation on ice to monitor generation of the Ca2(+)-independent activity, the Arg283 kinase attained maximal Ca2(+)-independent activity (about 20%) within 30 s, whereas the Gln283 and Glu283 mutants attained maximal Ca2(+)-independence only after about 40 min of autophosphorylation. The results indicate that Arg283 is a very important determinant for the regulatory autophosphorylation of Thr286 that generates the Ca2(+)-independent activity but is not essential for the other multiple autophosphorylations within Ca2+/calmodulin-dependent protein kinase II, and that Arg283 is only one of several important residues for the inhibitory potency of the autoinhibitory domain.  相似文献   

18.
Two Fab fragments of the monoclonal anti dinitrophenyl (DNP) spin-label antibody AN02 were prepared by recombination of specifically deuterated heavy and light chains. In the recombinant H(I)L(II) all the tyrosines and phenylalanines were perdeuterated as were the tryptophan residues of the heavy chain. In the recombinant H(II)L(I) all the tyrosines and phenylalanines were perdeuterated as were the tryptophan residues of the light chain. Saturation of three resonances of H(I)L(II), assigned to tryptophan protons of the light chain, resulted in magnetization transfer to the aromatic proton at position 6 of the DNP ring and to the CH2 protons of the glycines linked to the DNP in a diamagnetic hapten (DNP-DG). Saturation of three resonances of H(II)L(I) assigned to tryptophan protons of the heavy chain resulted in magnetization transfer to the CH2 protons of the glycines in DNP-DG. From the dependence of the magnetization transfer on the irradiation time, the cross relaxation rates between the involved protons were estimated. The inferred distances between these protons of the hapten and certain tryptophan protons are 3-4 A. It is concluded that in the combining site of AN02 there is one tryptophan from the light chain and one tryptophan from the heavy chain that are very near the hapten. When all tyrosines and phenylalanines were perdeuterated and all tryptophan aromatic protons were deuterated except for the protons at positions 2 and 5, titration of the Fab fragments with variable amounts of paramagnetic hapten showed that one proton from the light chain tryptophan is near (less than 7 A) the unpaired electron and that three other protons are significantly closer than 15 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We applied the protein photochemically induced dynamic nuclear polarization (photo-c.i.d.n.p.) method to explore the conformation of the side chains of tyrosine, tryptophan and histidine residues in three biotin-binding proteins. The c.i.d.n.p. spectra of avidin, streptavidin and 'core' streptavidin were compared with those of their complexes with biotin and its derivatives. The data indicate that the single tyrosine residue (Tyr-33) of avidin is clearly inaccessible to the triplet flavin photo-c.i.d.n.p. probe. The same holds for all tryptophan and histidine side chains. Although the analogous Tyr-43 residue of streptavidin is also buried, at least three of the other tyrosine residues of this protein are exposed. The same conclusions apply to the truncated form of the protein, core streptavidin. As judged by the photo-c.i.d.n.p. results, complexing of avidin and streptavidin with biotin, N-epsilon-biotinyl-L-lysine (biocytin) or biotinyltyrosine has little or no effect on tyrosine accessibility in these proteins. Biotinyltyrosine can be used to probe the depth of the corresponding binding site. The accessibility of the tyrosine side chain of biotinyltyrosine in the complex demonstrates the exquisite fit of the biotin-binding cleft of avidin: only the biotin moiety appears to be accommodated, leaving the tyrosine side chain exposed.  相似文献   

20.
D E Robertson  P A Kroon  C Ho 《Biochemistry》1977,16(7):1443-1451
The histidine-binding protein J of Salmonella typhimurium binds L-histidine as a first step in the high-affinity active transport of this amino acid across the cytoplasmic membrane. High-resolution nuclear magnetic resonance spectroscopy has been used to monitor the conformation of histidine-binding protein J in the presence and absence of substrate. Evidence is presented to show that this binding protein undergoes a conformational change involving a substantial number of amino-acid residues (including tryptophans) in the presence of L-histidine and that this change is specific for L-histidine. In order to monitor the involvement of tryptophan residues in the substrate-induced conformational change, 5-fluorotryptophan has been incorporated biosynthetically into the histidine-binding protein J using a tryptophan autotroph of Salmonella typhimurium. There are no significant differences in the conformation and binding activity between the 5-fluorotryptophan-labeled and the normal histidine-binding protein J. Proton and fluorine-19 nuclear magnetic resonance studies of the 5-fluorotryptophan-labeled binding protein show that at least one (and possibly two) of the tryptophan residues undergo(es) a change toward a more hydrophobic environment in the presence of L-histidine. These observations are supported by fluorescence data and by differences in the reactivity of the tryptophan residues of this protein toward N-bromosuccinimide in the presence and absence of substrate. The present results are consistent with models for the action of periplasmic-binding proteins in shock-sensitive transport systems of gram-negative bacteria which require a substrate-induced conformational change prior to the energy-dependent translocation of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号