首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific activity of rat poly(adenosine diphosphate ribose) glycohydrolase was higher in the testis than in the liver, brain, spleen or kidney. The enzyme was found primarily in the soluble fraction of the testis. When the soluble enzyme was chromatographed on phosphocellulose, the activity eluted in two peaks, at 0.22 and 0.34 m KCl, respectively, referred to in the present study as enzyme A and B. Enzyme A has an optimal pH of 7.25 and was stimulated by 150 mm KCl. The optimal pH of enyzme B was 6.5, but it was not stimulated by KCl. For maximal activity both enzymes required 10 mm 2-mercaptoethanol, and they were strongly inhibited by 100 μmp-chloromercuribenzoate. The Km values of enzyme A and B for poly(adenosine diphosphate ribose) were 1.52 and 0.70 μm, respectively. Ribose 5′-phosphate, guanosine 3′,5′-monophosphate, adenosine 3′,5′-monophosphate and adenosine diphosphate ribose inhibited both enzymes. The two latter nucleotides behave as noncompetitive inhibitors. Denatured DNA and the homopolypurines poly(G), poly(I) and poly(A) were very potent inhibitors of both glycohydrolases. The mode of hydrolysis of poly(adenosine diphosphate ribose) by glycohydrolases A and B was exoglycosidic, yielding adenosine diphosphate ribose as the final product.  相似文献   

2.
Poly(adenosine diphosphate ribose) glycohydrolase, which has thus far only been found in mammalian tissues, was found for the first time in the primitive eukaryotic slime mold Physarum polycephalum. The hydrolytic product of poly(adenosine diphosphate ribose) with this enzyme was identified as adenosine diphosphate ribose by paper and thin-layer chromatography. It is likely that the enzyme caused exoglycosidic hydrolysis. The optimal pH of this enzyme was 6.0, and the Km value was 4.3 μm, as adenosine diphosphate ribose residues of polymer. Adenosine diphosphate ribose, ADP and ATP at a concentration of 0.1mm strongly inhibited the enzyme activity. 3′,5′-Cyclic AMP was inhibitory at a concentration of 1mm. The molecular weight of this enzyme was estimated to be 57,000.  相似文献   

3.
Poly(ADP-ribose) glycohydrolase was found in metaphase chromosomes of HeLa S3 cells. Adenosine diphosphate ribose and 3′, 5′-cyclic AMP inhibited the glycohydrolase activity, whereas ADP, ATP, NAD and 3′,5′-cyclic GMP did not. The hydrolytic product of poly(ADP-ribose) bound to metaphase chromosomes with this enzyme was identified as adenosine diphosphate ribose.  相似文献   

4.
  • 1.1. Liver nuclei isolated from male mice treated with the carcinogen N,N-diethylnitrosamine were examined for the homopolymer poly(adenosine diphosphate ribose) and for the activity of the conjugate polymerase.
  • 2.2. At all levels of the carcinogen tested, a concomitant increase in both poly(adenosine diphosphate ribose) content and activity of the enzyme were found.
  • 3.3. Both responses were transitory and dose dependent.
  相似文献   

5.
Oligo(adenosine diphosphate ribose) preparations with chain lengths of 3 to 10 adenosine diphosphate ribose units were fractionated according to their chain lengths and their terminal structures by hydroxyapatite column chromatography and then polyacrylamide gel electrophoresis. The peak fractions from the hydroxyapatite column were each separated into two distinct subfractions by gel electrophoresis. The two subfractions were found to differ in chain length and terminal structure. A linear correlation was observed between the mobility and the logarithm of the chain length of oligo(adenosine diphosphate ribose) on gel electrophoresis, irrespective of the terminal structure.  相似文献   

6.
The 13C NMR spectra of poly(adenosine diphosphate ribose), ribosyl adenosine 5', 5'-bis(phosphate) and related compounds were analyzed. The structure of the ribose-ribose linkage was determined as alpha-(1' leads to 2')ribofuranosyl ribofuranoside, from the 13C chemical shifts of methyl-alpha- and methyl-beta-D-ribofuranosides, and from the downfield displacements of 13C NMR signals by glycosidic bond formation.  相似文献   

7.
The degree of complexing between DNA and chromosomal proteins and the ability of poly adenosine diphosphate ribosylation (ADP-ribosylation) of nuclear proteins to release this template restriction and expose DNA primer site changes during the HeLa cell cycle. Primer site exposure by NAD and poly ADP(ribose) polymerase was assessed with intact nuclei by single deoxynucleotide incorporation into DNA in the presence of saturating bacterial DNA polymerase. The most marked in vitro enhancement of primer site exposure by ADP-ribosylation occurred in early G1 phase, where cellular template restriction was the greatest. Cytoplasmic DNA polymerase also had high activity in early G1 phase of the cell cycle. Streptozotocin reduces NAD pools in HeLa cells; a concomitant stimulation of nuclear poly ADP(ribose) polymerase activity is noted.  相似文献   

8.
Specific antibody against 2'-(5"-phosphoribosyl)-5'AMP (PR-AMP), a monomer of poly(adenosine diphosphate ribose) (poly(ADP-Rib)), was produced by immunizing a rabbit with PR-AMP coupled to bovine serum albumin (BSA). Antibody against PR-AMP was purified 53-fold from serum by (NH4) 2SO4 precipitation, and BSA-Sepharose 4B, DEAE-cellulose and (PR-AMP)-BSA-Sepharose 4B column chromatographies. Inhibition experiments show that the adenine ring, 5'-phosphate residue and ribose-ribose bond of PR-AMP were essential for the antigenic determinant of PR-AMP. Anti PR-AMP antibody bound, not only with PR-AMP, but also with poly(ADP-Rib) of various chain lengths, while anti poly(ADP-Rib) antibody bound with poly(ADP-Rib) but not with PR-AMP.  相似文献   

9.
[See figures]. The synthesis of analogues of adenosine diphosphate ribose and acetylated adenosine diphosphate ribose, modified at the northern pentose, is reported. The stereochemistry at the acetylated centers was chosen to minimize acetyl migration and dictated the overall synthetic strategy.  相似文献   

10.
Alkaline degradation of poly(adenosine diphosphate ribose) is greatly enhanced by Mg2+ ions. Only phosphoribosyl-AMP and 5′-AMP were found as reaction products indicating exclusive and quantitative splitting of the pyrophosphate bonds. The procedure was successfully used to degrade poly(ADP-ribose) in crude cell extracts. Since complete enzymic digestion of poly(ADP-ribose) is difficult to obtain in whole tissue homogenates application of the new chemical procedure represents a significant improvement for the quantitation of the polymer based on the conversion to the specific derivative phosphoribosyl-AMP. It also opens a way for the determination of poly(ADP-ribose) chain length in vivo.  相似文献   

11.
About 1,300-fold purification of poly(adenosine diphosphate ribose) polymerase has been achieved from the extract of bovine thymus with a recovery of 10 to 20%. The final preparation has a purity of 99%, and the enzyme is composed of a single peptide with a molecular weight of 130,000. The purified enzyme required NAD+, Mg2+, a thiol compound, DNA, and histones for full activity. Whereas DNA is essential for activation of the enzyme, histones are not. The observed stimulation of the reaction by histones is shown to be due to masking of the inhibitory effect of contaminating denartured DNA in native DNA preparation. The concentration of DNA required for half-maximal enzyme activity (apparent Km for DNA) is proportional to the concentration of enzyme in the reaction mixture. The minimum estimation of the number of nucleotide pairs of DNA required for half-maximal activation of one enzyme molecule is 220 to 240 for bulk of calf thymus DNA, while the value is 10 for a calf thymus DNA fraction, "active DNA," which was separated from the enzyme fraction in a stage of the purification. These results suggest that the enzyme is activated by binding to a specific site on calf thymus DNA. The apparent Km for NAD+ and the maximum velocity of the enzyme are estimated to be 60 micrometer and 0.91 mumolper min per mg, respectively.  相似文献   

12.
13.

The synthesis of analogues of adenosine diphosphate ribose and acetylated adenosine diphosphate ribose, modified at the northern pentose, is reported. The stereochemistry at the acetylated centers was chosen to minimize acetyl migration and dictated the overall synthetic strategy.  相似文献   

14.
An electrophoretic system was established that resolves poly(adenosine diphosphate ribose), enzymatically synthesized polymer from NAD+, by size difference of one residue on polyacrylamide gel. The existence of a polymer of at least 65 residues was demonstrated by band counting in this system. The polymer showed a heterogeneous size distribution on the electrophoregram, and the molecular weight of the largest polymer was deduced to be more than 4.5 X 10(5) daltons. The discrepancy between the size, estimated by electrophoresis, and the chain length, determined by the ratio of total radioactivity to that derived from the terminus, suggests that the polymer has a branched structure.  相似文献   

15.
Chinese hamster ovary cells were synchronized by mitotic selection and used to study the relation of poly(adenosine diphosphate ribose) synthesis to DNA synthesis and the different phases of the cell cycle. DNA synthesis was measured in cells rendered permeable to exogenously supplied nucleotides. Poly(ADPR) synthesis was also measured in permeable cells in the presence of both minimum and maximum DNA damage. The maximum DNA damage was produced by treating the cells with saturating concentrations of DNase. As anticipated, the DNA synthesis complex showed its maximum activity during S phase and showed 4–5-fold less activity during the other phases of the cell cycle. The basal level of poly(ADPR) synthesis was elevated during G1, fell to its lowest level during S phase, then increased during G2 and rose to its highest level during G1. The DNase responsive activity of poly(ADPR) synthesis was relatively constant thru the cell cycle but showed a peak at the end of S phase; then the activity decreased during the subsequent G2-M period.  相似文献   

16.
We report in this paper on isolation and characterization of two unknown nucleosides G* and [A*] located in the T-psi-stem of yeast methionine initiator tRNA, using the combined means of HPLC protocols, real time UV-absorption spectrum, and post-run mass spectrometry by electron impact or fast atom bombardment. The G* nucleoside in position 65 was identified as unmodified guanosine. The structure of the unknown [A*] in position 64 was characterized as an isomeric form of O-ribosyl-adenosine by comparison of its chromatographic, UV-spectral and mass spectrometric properties with those of authentic O-alpha-ribofuranosyl-(1"----2')-adenosine isolated from biosynthetic poly(adenosine diphosphate ribose). Our studies also brought evidence for the presence of a phosphorylmonoester group located on this new modified nucleoside [A*], when isolated by ion exchange chromatography from enzymic hydrolysis of yeast initiator tRNAMet without phosphatase treatment.  相似文献   

17.
Permeabilized mouse testicular cells and Sertoli cells were incubated with [3H]NAD. The radioactive derivative in the acid-precipitable material extracted by washing the cells was determined to be a composite of monomers of adenosine diphosphate ribose (ADP-ribose). The present results suggest that mammalian cells possess an enzyme system which mediates mono-ADP-ribosylation of proteins.  相似文献   

18.
Two hybridomas producing monoclonal antibodies to poly(adenosine diphosphate ribose) [poly(ADP-Rib)] were established. One antibody, 10H (IgG3, kappa), bound to most of the poly(ADP-Rib) preparation, which consisted of molecules of various sizes of more than 20 ADP-Rib residues. The binding of this antibody was inhibited by not only poly-(ADP-Rib) but also a monomer unit of poly(ADP-Rib), Ado(P)-Rib-P. The sites protected by antibody 10H were isolated and analyzed by hydrolysis with alkaline phosphomonoesterase and then snake venom phosphodiesterase. The sites contained the same amounts of monomer units and branched portions [Ado(P)-Rib(P)-Rib-P] as the original poly(ADP-Rib) molecules but a lower average number of branched portions per molecule than in the original molecules. The other antibody, 16B (IgM, lambda), reacted with only 50% of the radioactive poly(ADP-Rib), and its binding was not inhibited by a monomer unit. This antibody protected 25% of all the poly(ADP-Rib) molecules from hydrolysis by snake venom phosphodiesterase. The protected sites contained twice as many branched portions per molecule as the original poly(ADP-Rib) molecules. These results show that the two monoclonal antibodies recognize different structures of poly-(ADP-Rib); 10H antibody recognizes the linear structure with ribose-ribose linkages, and 16B antibody may recognize specific structures, including the branched portions of poly-(ADP-Rib).  相似文献   

19.
Purified bovine thymus poly(adenosine diphosphate ribose) polymerase is a monomeric protein with a single polypeptide chain having a molecular weight of approximately 130,000, determined by sodium dodecyl sulfate-gel electrophoresis, analytical ultracentrifugation, and gel filtration. A high frictional ratio (1.81) indicated that the molecule has an elongated shape, or a high solvation, or both. The enzyme is a basic protein (pI 9.8), and amino acid analysis showed a relatively high lysine content. The enzyme activity is dependent on double-stranded DNA and is solely correlated with single- or double-stranded breaks on the DNA. Filter binding assay technique showed that the enzyme-activating efficiency of DNA correlated sufficiently with its enzyme-binding efficiency. Thus, a very high enzyme-activating efficiency of a DNA fraction (active DNA) which was separated from the crude enzyme fraction is mainly due to its high enzyme-binding efficiency. It was also shown that single-stranded DNA and heparin had a strong inhibitory effect on the binding of the enzyme to double-stranded DNA, whereas competitive inhibitors did not affect the binding, We interpret these results to indicate that the binding of the enzyme to double-stranded DNA is a prerequisite step to its catalytic activity and has a dual function: (a) to position the enzyme on specific binding sites such as single- or double-stranded breaks on the DNA, and (b) to induce an active conformation of the enzyme.  相似文献   

20.
Binding of 5S estradiol receptor to poly-deoxynucleotides   总被引:2,自引:0,他引:2  
Calf uterus cytosol was incubated with (3H)estradiol and fractionated on Sephadex G-200. Two (3H)estradiol-binding protein fractions were obtained with sedimentation coefficients of 5.1 S and 3.5 S, respectively. The 5.1 S fraction bound to poly dT, poly dA:dT and poly dG:dC to a higher extent than to calf thymus DNA. The 3.5 S fraction did not bind to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号