首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoglobin structure and regulation of solvent accessibility of heme pocket   总被引:1,自引:0,他引:1  
The effects of heme removal on the molecular structure of tuna and sperm whale myoglobin have been investigated by comparing the solvent accessibility to the heme pocket of the two proteins with that of the corresponding apoproteins. Although the heme microenvironment of tuna myoglobin is more polar than that of sperm whale myoglobin, the accessibility of solvent to heme is identical in the two proteins as revealed by thermal perturbation of Soret absorption. The removal of heme produces loss of helical folding and increase of solvent accessibility but the effects are rather different for the two proteins. More precisely, the loss of helical structure upon heme removal is 50% for tuna myoglobin and 15% for sperm whale myoglobin; moreover, the solvent accessibility of the heme pocket of tuna apomyoglobin is 2-3-fold greater than that of sperm whale apomyoglobin. These results have been explained in terms of the lack of helical folding in segment D, the structural organization of which may have a relevant effect in regulating the accessibility of ligands to the heme. The effects produced by charged quenchers reveal that the ligand path from the surface of the molecule to the ion atom of the heme involves a positively charged residue which may reasonably be identified as Arg-45 (sperm whale myoglobin) or Lys-41 (tuna myoglobin) on the basis of recent X-ray crystallographic information.  相似文献   

2.
Eckenhoff RG  Pidikiti R  Reddy KS 《Biochemistry》2001,40(36):10819-10824
Halothane, an inhaled anesthetic, destabilizes the folded structure of myoglobin. To determine whether this is due to preferential interactions with less stable folded conformers of myoglobin versus the completely unfolded state, we used photoaffinity labeling, hydrogen exchange, fluorescence spectroscopy, and circular dichroism spectroscopy. Apomyoglobin was used as a model of a less stable conformer of myoglobin. Halothane destabilizes myoglobin and binds with low affinity and stoichiometry but stabilizes and binds with higher affinity to apomyoglobin. The same halothane concentration has no effect on cytochrome c stability. The apomyoglobin/halothane complex is favored at pH 6.5 as compared to pH 4.5 or pH 2.5. Halothane photoincorporates into several sites in apomyoglobin, some allosteric to the heme pocket. Guanidinium unfolding of myoglobin, monitored by CD spectroscopy, shows destabilization at less than 1.3 M Gdm but stabilization at greater than 1.3 M Gdm, consistent with the hypothesis that less stable conformers of myoglobin bind halothane preferentially. We suggest the structural feature underlying preferential binding to less stable conformers is an enlarged cavity volume distribution, since myoglobin has several intermediate-sized cavities, while cytochrome c is more well packed and has no cavities detected by GRASP. Specific binding to less stable intermediates may underlie anesthetic potentiation of protein activity.  相似文献   

3.
The complexes of the three BrCN-cleaved fragments of sperm whale apomyoglobin with hemin were studied by circular dichroism (CD). In native myoglobin, the heme is located in the middle fragment; the isolated peptide (residues 56–131), however, produces little extrinsic Cotton effects by the addition of hemin, although about four molecules of hemin are bound to this peptide. In marked contrast, the COOH-terminal peptide (residues 132–153), which binds three hemin molecules, shows strong Cotton effects in the Soret bands and drastically changes its conformation from unordered to highly helical. The Arg-modified or Lys-deaminated peptide no longer undergoes conformational changes by the addition of hemin, suggesting that the two propionic acid groups of one hemin molecule interact with the Arg residue and one of the Lys residues, which stabilizes the induced helical conformation. The NH2-terminal peptide (residues 1–55) binds one hemin molecules, and the helicity of this fragment is slightly enhanced by the addition of hemin. Both the CD and difference absorption spectra indicate that the mode of interaction between the peptides and hemin are different for the three apomyoglobin fragments.  相似文献   

4.
Spectrophotometric titration of meso-tetra(n-propyl)hemin with sperm-whale apomyoglobin revealed their 1:1 complex formation. The purified reconstituted metmyoglobin bound with an equal molar amount of CN- and the second CN- ligation was not evidenced, suggesting that the hemin is not loosely attached to the globin surface, but incorporated into the heme pocket. The hyperfine-shifted proton NMR spectrum of the deoxy myoglobin revealed the proximal imidazole NH resonance at 85.1 ppm to indicate the formation of the Fe-N(His-F8) bond. The eight pyrrole protons of the hemin of myoglobin in the absence of external ligand were observed as a single peak at -16 ppm. This indicates the electronic symmetry of the hemin and the low-spin configuration of the heme iron. The pyrrole-proton NMR patterns of the cyanide and deoxy myoglobins were found to be remarkably temperature-dependent, which was consistently explained in terms of the free rotation of the prosthetic group. The NMR results suggest that introduction of meso-tetra(n-propyl)hemin totally disrupts the highly stereospecific heme-globin contacts, making the prosthetic group mobile in the heme cavity.  相似文献   

5.
The effects of aqueous ethanol or 2,2,2-trifluoroethanol media on the structure of sperm whale myoglobin have been investigated by absorption, CD, and NMR spectra. The structural properties of myoglobin such as heme environments, helix contents, protein folding, and interactions between heme and the protein moiety have been sharply manifested in these spectra. The characterization demonstrated that alcohol-induced conformational change of myoglobin depends on the nature of alcohol and its concentration. It was shown for the first time that, upon the alcohol-induced denaturation of myoglobin, heme is released from partially denatured protein of which helix contents is altered by only about 20% relative to that of native state. Myoglobin has shown to unfold and refold reversibly by controlling the alcohol concentration. Novel methods for the preparation of apomyoglobin and in situ reconstitution of apomyoglobin with heme, based on the alcohol-induced denaturation of the protein, were presented.  相似文献   

6.
The heme d1 prosthetic group isolated from Pseudomonas cytochrome oxidase combines with apomyoglobin to form a stable, optically well-defined complex. Addition of ferric heme d1 quenches apomyoglobin tryptophan fluorescence suggesting association in a 1:1 molar ratio. Optical absorption maxima for heme d1.apomyoglobin are at 629 and 429 nm before, and 632 and 458 nm after dithionite reduction; they are distinct from those of heme d1 in aqueous solution but more similar to those unobscured by heme c in Pseudomonas cytochrome oxidase. Cyanide, carbon monoxide and imidazole alter the spectrum of heme d1.apomyoglobin demonstrating axial coordination to heme d1 by exogeneous ligands. The cyanide-induced optical difference spectra exhibit isosbestic points, and a Scatchard-like analysis yields a linear plot with an apparent dissociation constant of 4.2 X 10(-5) M. However, carbon monoxide induces two absorption spectra with Soret maxima at 454 or 467 nm, and this duplicity, along with a shoulder that correlates with the latter before binding, suggests multiple carbon monoxide and possibly heme d1 orientations within the globin. The 50-fold reduction in cyanide affinity over myoglobin is more consistent with altered heme pocket interactions than the intrinsic electronic differences between the two hemes. However, stability of the heme d1.apomyoglobin complex is verified further by the inability to separate heme d1 from globin during dialysis and column chromatography in excess cyanide or imidazole. This stability, together with a comparison between spectra of ligand-free and -bound derivatives of heme d1-apomyoglobin and heme d1 in solution, implies that the prosthetic group is coordinated in the heme pocket through a protein-donated, strong-field ligand. Furthermore, the visible spectrum of heme d1.apomyoglobin varies minimally with ligand exchange, in contrast to the Soret, which suggests that much spectral information concerning heme d1 coordination in the oxidase is lost by interference from heme c absorption bands. A comparison of the absorption spectra of heme d1.apomyoglobin and Pseudomonas cytochrome oxidase, together with a critical examination of the previous axial ligand assignments from magnetic resonance techniques in the latter, implies that it is premature to accept the assignment of bishistidine heme d1 coordination in oxidized, ligand-free oxidase and other iron-isobacteriochlorin-containing enzymes.  相似文献   

7.
Proton NMR studies on myoglobins and hemoglobins reconstituted with non-natural hemes, possessing different side chains in the pyrrolic rings, have provided interesting information for the understanding of the mechanism governing heme reorientation in the globin pocket, during synthesis of the native protein in vivo or in the reconstitution process in vitro. More recently, circular dichroism (CD) studies have been reported as a qualitative, alternative tool, with respect to 1H-NMR for detecting heme disorder in a reconstituted myoglobin or hemoglobin. In this paper, a CD study is reported on the reconstitution of horse heart myoglobin with protoheme XIII, a heme possessing true rotational symmetry about its alpha, gamma-meso axis. The results obtained show that the reconstitution product with this heme, which binds to the apoprotein with high affinity, not dissimilar from that of the natural heme, is characterized by a CD spectrum with bands possessing rotational strengths much lower than in the native protein. Furthermore, the CD changes detected as a function of time, during heme reorientation, in the case of natural heme, are absent when the apoprotein is reconstituted with protoheme XIII. These data provide independent evidence for reorientation of the natural heme, which follows its insertion into the protein matrix.  相似文献   

8.
The molecular properties of the salt-induced partly folded acidic state of apomyoglobin as well as myoglobin were investigated by fluorescence and circular dichroism of the extrinsic fluorophore 1,8-anilinonaphthalenesulfonate. The occurrence of a fluctuating tertiary structure ("molten globule") at acidic pH in the presence of salt was suggested by the disappearance of the dichroic activity of the fluorophore bound to the partly folded protein. Moreover, the structure of the intermediate is not influenced by the presence of heme, thus suggesting that heme is not crucial in the early stage of myoglobin folding.  相似文献   

9.
Incorporation of the three synthetic hemins, Fe(III) meso-tetraalkylporphyrins with the methyl, ethyl, or n-propyl groups, into apomyoglobin was followed by spectrophotometry, and the stoichiometric complex formation was confirmed. The reconstituted myoglobins bind with an equimolar amount of cyanide to exhibit visible absorption peaks at 419, 570, and 608 nm. The spectral feature was independent of the cyanide concentrations. Proton NMR spectra of the cyanide complexes resolved the pyrrole-proton signals of the hemins in a -5 to -15-ppm region, which is comparable with that of the corresponding signals of deuterohemin-containing low-spin methemoproteins. These spectral observations indicate the presence of the NC-Fe-N(His-F8) structure in the presently reconstituted cyanide metmyoglobins. The pyrrole-proton NMR signals of the hemins in cyanide metmyoglobins appeared as a singlet, doublet, or quartet for the methyl, ethyl, or n-propyl hemin complexes, respectively. The systematic NMR spectral changes suggest the dynamic free rotation of the alkylhemins about the Fe-N(His-F8) bond. Temperature-dependent NMR spectral transition of the meso-tetraethylhemin-reconstituted myoglobin was consistent with thermally regulated dynamic free rotation of the hemin in the myoglobin heme pocket.  相似文献   

10.
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.  相似文献   

11.
The removal of the heme group from myoglobin (Mb) results in a destabilization of the protein structure. The dynamic basis of the destabilization was followed by comparative measurements on holo- (holo-Mb) and apomyoglobin (apo-Mb). Mean-squared displacements (MSD) and protein resilience on the picosecond-to-nanosecond timescale were measured by elastic incoherent neutron scattering. Differences in thermodynamic parameters, MSD, and resilience were observed for both proteins. The resilience of holo-Mb was significantly lower than that of apo-Mb, indicating entropic stabilization by a higher degree of conformational sampling in the heme-bound folded protein. Molecular dynamics simulations provided site-specific information. Averaged over the whole structure, the molecular dynamics simulations yielded similar MSD and resilience values for the two proteins. The mobility of residues around the heme group in holo-Mb showed a smaller MSD and higher resilience compared to the same residue group in apo-Mb. It is of interest that in holo-Mb, higher MSD values are observed for the residues outside the heme pocket, indicating an entropic contribution to protein stabilization by heme binding, which is in agreement with experimental results.  相似文献   

12.
This study examines the post-translational role of peripheral propionate groups in the incorporation of the Fe-protoporphryin IX heme into nascent alpha- and beta-globin chains. Human apohemoglobin (a heme-free alpha/beta dimer) in 0.05 M potassium phosphate buffer, pH 7, at 20 degrees C was titrated with either CN-protohemin (native heme with two peripheral propionate groups), or CN-dimethylester hemin (a modified heme with two methyl ester groups in place of the propionate groups). Soret spectrophotometric CN-hemin titrations confirmed that a spectral shift resulted upon binding of protohemin, but no spectral shift occurred upon binding the dimethylester derivative. Recent studies have correlated a Soret spectral shift with the preferential heme binding to the alpha subunit of apohemoglobin. The absence of a Soret wavelength shift (in conjunction with molecular modeling) presented here suggested that the modification of heme propionate groups prevented the formation of an alpha-heme/beta-globin intermediate, a requisite step in the normal assembly of functional hemoglobin.  相似文献   

13.
Kinetics of the reconstitution of hemoglobin from semihemoglobins and with hemin dicyanide have been investigated using three kinds of stopped-flow technique (Soret absorption, fluorescence quenching of tryptophan, and Soret CD). The semihemoglobins and are occupied by heme in the and chains, respectively, the other chain being heme-free. Based on the kinetic results, the following scheme for the reconstitution is proposed; First, hemin dicyanide enters the pocket-like site of the apo chains. Second, in semihemoglobin , the CN-ligand in the fifth coordination position of iron is replaced by the imidazole ring of the proximal His immediately after the heme insertion. In contrast, semihemoglobin changes its conformation after the heme insertion, and this is followed by the ligand replacement. Finally, the partial structure changes induced by the ligand replacement propagate onto the whole molecule and the final conformation is attained. The results indicate that semihemoglobin retains a more rigid and organized structure, and more closely approaches its final structure than does semihemoglobin . Correspondence to: Y. Kawamura-Konishi  相似文献   

14.
An analysis of the reconstitution of biliverdins with extended conformations and horse heart apomyoglobin was carried out. Biliverdins with the 5Z-syn, 10Z-syn, 15Z-anti and 5Z-anti, 10Z-syn, 15Z-anti conformations, as well as biliverdins with the Z,Z,Z, all-syn conformation recombined with apomyoglobin. In every case the P enantiomers were bound in excess to the M enantiomers, with exception of the 5-syn, 10-syn, 15-anti biliverdin where the M enantiomer bound preferentially to the protein. Biliverdins with an anti conformation at the C-10 meso bridge did not recombine with the protein. It was concluded that the presence of a syn conformation at the C-10 methine conferred to the biliverdin the necessary helicity to fit into the apomyoglobin heme pocket. This regioselectivity is of importance in view of the well known analogy between the ligand domains of myoglobin and the C-phycocyanins.  相似文献   

15.
R S Deeb  D H Peyton 《Biochemistry》1992,31(2):468-474
Events during the reconstitution of apomyoglobin to form the holoprotein were probed by porphyrin-metal substitution. Thus interactions between tin(IV) protoporphyrin IX (SnPP) and equine apomyoglobin (apoEqMb), and between tin(IV) protoporphyrin IX dimers [(SnPP)2] and apoEqMb, were observed by 1H NMR and optical absorbance spectroscopic techniques. The chief advantages of using SnPP are that products and intermediates can easily be related to SnPP.EqMb which has been studied [Deeb, R.S., & Peyton, D.H. (1991) J. Biol. Chem. 266, 3728-3733] and that at least one step during reconstitution is slowed considerably as compared to heme. Reactions of apoEqMb with SnPP and (SnPP)2 produce different intermediates, although the final product, SnPP.EqMb, is the same for each. An intermediate observed for reaction of SnPP with apoEqMb at pH 10 is in exchange with free SnPP, with the observed rate constant koff approximately 1 s-1. meso-Proton resonances were assigned for this intermediate by correlation to SnPP resonances via chemical exchange. The intermediate observed for reaction of (SnPP)2 with apoEqMb at pH 7.5 is heterogeneous. The reaction of either SnPP or (SnPP)2 with apoEqMb at neutral pH produces another species which may be the alternate porphyrin-insertion isomer arising from a 180 degree rotation about the alpha, gamma-meso axis of the porphyrin. Although optical absorbance spectroscopy of the Soret region shows evidence for each reaction, only in combination with 1H NMR are the various processes assigned.  相似文献   

16.
Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to biliverdin by utilizing O(2) and NADPH. HO (apoHO) was crystallized as twinned P3(2) with three molecules per asymmetric unit, and its crystal structure was determined at 2.55 A resolution. Structural comparison of apoHO and its complex with heme (HO-heme) showed three distinct differences. First, the A helix of the eight alpha-helices (A-H) in HO-heme, which includes the proximal ligand of heme (His25), is invisible in apoHO. In addition, the B helix, a portion of which builds the heme pocket, is shifted toward the heme pocket in apoHO. Second, Gln38 is shifted toward the position where the alpha-meso carbon of heme is located in HO-heme. Nepsilon of Gln38 is hydrogen-bonded to the carbonyl group of Glu29 located at the C-terminal side of the A helix in HO-heme, indicative that this hydrogen bond restrains the angle between the A and B helices in HO-heme. Third, the amide group of Gly143 in the F helix is directed outward from the heme pocket in apoHO, whereas it is directed toward the distal ligand of heme in HO-heme. This means that the F helix around Gly143 must change its conformation to accommodate heme binding. The apoHO structure has the characteristic that the helix on one side of the heme pocket fluctuates, whereas the rest of the structure is similar to that of HO-heme, as observed in such hemoproteins as myoglobin and cytochromes b(5) and b(562). These structural features of apoHO suggest that the orientation of the proximal helix and the position of His25 are fixed upon heme binding.  相似文献   

17.
 A novel C 2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme. A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin in a variety of iron oxidation, spin, and ligation states, is presented. Received: 23 December 1999 / Accepted: 3 April 2000  相似文献   

18.
The protein folding process of heme proteins entails generation of not only a correct global polypeptide structure, but also a correct, functionally competent heme environment. We employed a variety of spectroscopic approaches to probe the structure and dynamics of the heme pocket of a recombinant sperm whale myoglobin. The conformational characteristics were examined by circular dichroism, time-resolved fluorescence spectroscopy, FTIR spectroscopy, and optical absorption spectroscopy in the temperature range 300-20 K. Each of these spectroscopic probes detected modifications confined exclusively to the heme pocket of the expressed myoglobin relative to the native protein. The functional properties were examined by measuring the kinetics of CO binding after flash-photolysis. The kinetics of the expressed myoglobin were more heterogeneous than those of the native protein. Mild acid exposure of the ferric derivative of the recombinant protein resulted in a protein with "nativelike" spectroscopic properties and homogeneous CO binding kinetics. The heme pocket modifications observed in this recombinant myoglobin do not derive from inverted heme. In contrast, when native apomyoglobin is reconstituted with the heme in vitro, the heme pocket disorder could be attributed exclusively to 180 degrees rotation of the bound heme [La Mar, G. N., Toi, H., and Krishnamoorthi, R. (1984) J. Am. Chem. Soc. 106, 6395-6401; Light, W. R., Rohlfs, R. J., Palmer, G., and Olson, J. S. (1987) J. Biol. Chem. 262, 46-52]. We conclude that exposure to low pH decreases the affinity of globin for the heme and allows an extended conformational sampling or "soft refolding" to a nativelike conformation.  相似文献   

19.
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of a side chain in the heme cavity of wild-type rat apocytochrome b5 reconstituted with a series of synthetic hemins possessing systematically perturbed carboxylate side chains. The hemins included protohemin derivatives with individually removed or pairwise shortened and lengthened carboxylate side chains, as well as (propionate)n(methyl)8-nporphine-iron(III) isomers with n = 1-3 designed to force occupation of nonnative propionate sites. The resonance assignments were effected on the basis of available empirical heme contact shift correlations and steady-state nuclear Overhauser effect measurements in the low-spin oxidized proteins. The failure to detect holoproteins with certain hemins dictates that the stable holoproteins, unlike the case of myoglobin, demand the axial iron-His bonds and cannot accommodate carboxylate side chains at interior positions in the binding pocket. Hence, the heme pocket interior in cytochrome b5 is judged much less polar and less sterically accommodating than that of myoglobin. The propionate occupational preference was greatest as the native 7-propionate site, but also possible at the nonnative crystallographic 5-methyl or 8-methyl positions. Only for a propionate at the crystallographic 8-methyl position was a significant perturbation of the native molecular/electronic structure observed, and this was attributed to an alternative propionate-protein hydrogen bond at the crystallographic 8-methyl position. The structures of the transient protein complexes detected only shortly after reconstitution reveal that the initial encounter complexes during assembly of holoprotein from apoprotein and hemin involve one of the two alternate propionate-protein links at either the 7-propionate or native 8-methyl position. In a monopropionate hemin, this leads to the characterization of a new type of heme orientational disorder involving rotation about a N-Fe-N axis.  相似文献   

20.
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号