首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandins of the E-series (PGE1 and PGE2) may be involved in disease-related, localized loss of bone. E-prostaglandins increase the cyclic AMP content of many cells; and, to determine if their effects on bone are mediated by cyclic AMP, we examined the effects of E-prostaglandins and of other agents on the cyclic AMP content of cultured bone cells. PGE2 produced a rapid, marked and dose-related increase in the cyclic AMP content of confluent monolayers of bone cells isolated from newborn rat calvaria. At 2.8 X 10(-6) M, PGE1 and PGE2 had approximately the same effect, while the effect of PGF2alpha was much less pronounced. In the presence of theophylline, PGE2 had a more marked effect than parathyroid hormone (PTH) and the combination of PGE2 and PTH had a synergistic effect. The divalent, cationic, ionophore, A23187, produced an increase in cellular cyclic AMP and had an additive effect in combination with PGE2. Synthetic salmon calcitonin (CT), which inhibits the bone resorptive effect of PGE2, increased cellular cyclic AMP and had an additive effect in combination with PGE2. A prostaglandin antagonist, SC-19220, partially inhibited the resorptive effect of PGE2 and reduced its effect on cellular cyclic AMP. The calcium antagonist, D600, inhibited the bone resorptive effects of PGE2 but had no effect on increased cellular cyclic AMP produced by PGE2. The marked effect of PGE2 on bone cell cyclic AMP suggests that this action is involved in the mechanism of PGE2-related bone loss. The fact that agents with different effects on PGE2-induced increases in cellular cyclic AMP can inhibit its resorptive actions, suggests that PGE2-induced changes in cyclic AMP may be related less to its resorptive actions than to its inhibitory effect on bone formation.  相似文献   

2.
The effect of prostacyclin on intestinal ion transport in the rat   总被引:2,自引:0,他引:2  
The actions of PGI2 and PGE2 on electrically monitored ion transport in rat jejunum and colon have been determined both in vivo and in vitro. Whilst PGE2 was shown to induce a marked change in ion transport PGI2 was relatively ineffective. The ability of the prostanoids to influence ion transport is related to their capacity to change mucosal cyclic AMP levels since in isolated small intestinal enterocytes PGE2 caused a marked stimulation in cyclic AMP levels whilst PGI2 had little effect. In colonic mucosal scrapes PGE2 was more effective than PGI2 in stimulating changes in cyclic AMP levels. It appears doubtful that PGI2 plays a direct role in the regulation of intestinal ion transport.  相似文献   

3.
The effect of prostaglandin analogues on the cycle AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 μM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

4.
The addition of physiological concentrations of zinc (25-200 (Μg/dL) to Dulbecco’s Modified Eagle’s Medium containing tibiae from 19-d chick embryos resulted in a concentration-dependent increase in tibial content of tartrate-resistant acid phosphatase (TRAP) and an increase in bone resorption, as measured by tibial calcium release. This increase in bone resorption was additive to the resorptive effect resulting from the addition of 10-9-10-7 M parathyroid hormone (PTH), but was not additive to similar effects produced by the addition of 10-9-10-7 M prostaglandin E2 (PGE2). An inhibitor of prostaglandin synthesis, flurbiprofen (10-6 M), did not influence the effect of zinc on bone resorption. However, the addition of 2,6-pyridinedicarboxylic acid (10-3 M, 2,6-PDCA), a chelator of zinc, did attenuate the effects of zinc, as did the addition of an inhibitor of DNA replication (hydroxyurea, 10-3 M). Hydroxyurea also attenuated the bone resorptive response to PGE2, but had no influence on the effects of PTH. These results indicate that physiological concentrations of zinc alter bone resorptive rates in vitro by a mechanism that is dependent on DNA replication.  相似文献   

5.
K Dismukes  J W Daly 《Life sciences》1975,17(2):199-209
Prostaglandin E1 and E2 and 15(S)-15-methyl PGE2 methyl ester stimulate the accumulation of radioactive cyclic AMP in brain slices from Sprague-Dawley rats, labelled during a prior incubation with [14C] adenine. Prostaglandins A1 and B1 have marginal effects and prostaglandin F has no effect. Relatively high concentrations of about 80 μM PGE1, PGE2 and 15(S)-15-methyl PGE2 are required to elicit a maximal 2–5 fold increase in accumulation of cyclic AMP in slices from cerebrum, but significant increases are elicited by 3.5 μM prostaglandin. Similar increases are elicited in slices from neocortex, striatum or midbrain-thalamus-hypothalamus, while lesser increases pertain in slices from cerebellum, medulla-pons or hippocampus. The accumulation of cyclic AMP elicited by PGE1 in slices from cerebrum was not blocked by naloxone, propranololphentolamine, tetracaine, theophylline, or by nearly equimolar concentrations of either of two prostaglandin antagonists, 7-oxa-13-prostynoic acid and the dibenzoxazepine hydrazide, SC 19220. Morphine potentiated the effects of PGE1. The combination of 85 μM PGE1 with either isoproterenol, norepinephrine, adenosine or veratridin did not increase the accumulation of cycli AMP significantly above those elicited by the isoproterenol, norepinephrine, adenosine or veratridine alone. The combined effect of PGE1 and norepinephrine in the presence of a β-adrenergic antagonist, sotalol, was, however, additive. The results indicate that PGE1 stimulates cyclic AMP formation in rat brain slices, but that it either has antagonist activity with respect to accumulations of cyclic AMP-elicited by other agents or has no detectable agonist activity when cyclases are maximally stimulated by other agents.  相似文献   

6.
Effects of parathyroid hormone (PTH) and several prostaglandins (PGs) on cyclic AMP (cAMP) metabolism were studied and compared in isolated renal cortical tubules from male hamsters. Both production and intracellular degradation of cAMP were increased by PTH and each of the PGs tested (PGE2, PGE1, PGI2). Production of cAMP was increased to similar levels by maximal concentrations of PTH and each PG, however, degradation of cAMP was significantly higher in response to PTH than with any of the PGs. This difference in intracellular degradation of cAMP was responsible for the much higher concentrations of cAMP in renal cortical tubules exposed to PGs (PGE1, PGE2, PGI2) than to PTH. Submaximal amounts of each PG produced additive increases in cAMP concentrations in the presence of maximal amounts of PTH. Additivity of the combined responses was lost, however, as the PGs concentrations reached their maximas. The results suggest that renal PGs (PGE2 and PGI2) may modulate the effects of PTH on cAMP concentrations in renal cortical tubules.  相似文献   

7.
25-OH-D3 and 1,25-(OH)2-D3 had no effects by themselves on the cyclic AMP levels of isolated bone cells but enhanced the stimulation seen following an exposure with submaximal concentrations of PTH for as little as 2 minutes. Preincubation with the 25-OH-D3 or 1,25-(OH)2-D3 resulted in a time dependent decrease in the enhancement of PTH response over a 1 hr period. It is, therefore, suggested that cyclic AMP may be involved in some aspects of the action of vitamin D3 derivatives on bone cells.  相似文献   

8.
Bradykinin, a potent inflammatory mediator, induces an increment in intracellular cyclic AMP concentrations of human synovial fibroblasts and evokes the synthesis and release of 3H-arachidonic acid and 3H-E prostaglandins from these cells pre-labeled in their phospholipids. Fetal calf serum in the media also stimulates the synthesis and release of these labeled lipids from pre-labeled human synovial fibroblasts and potentiates the bradykinin-induced cyclic AMP response. The PGE1 analogue, 7-oxa-13 prostynoic acid, completely abrogates both the bradkinin-induced cyclic AMP response and the bradykinin- and fetal calf serum-evoked release of labeled E-prostaglandins from pre-labeled cells. In serum-free media, the prostaglandin antagonist stimulated the release of 3H-arachidonic acid from pre-labeled human synovial fibroblasts and did not inhibit the bradykinin-induced release of this lipid.  相似文献   

9.
The effect of prostaglandin E1 (PGE1) on rat anterior pituitary cyclic AMP accumulation and luteinizing hormone (LH) release was studied both in vivo and in vitro. Addition of PGE1 to incubation medium over a concentration range of 10-6 to 10-4 M produced a graded increase in pituitary cyclic AMP. At the lowest concentration (10-6 M) there was no significant increase in LH release, but proportional increments in LH release were seen with increasing concentrations of PGE1.Ten minutes after intravenous administration of 5 μg of PGE1 to adult male rats, pituitary cyclic AMP was substantially increased while serum LH levels were not changed. Administration of a higher dose of PGE1 (20 μg) produced a greater increase in pituitary cyclic AMP; and, at this dose serum LH was significantly increased. These results suggest that the PGE1 effect on LH release is mediated by the adenyl cyclase — cyclic AMP system.  相似文献   

10.
Prostaglandin E1(PGE1), one of the components in the hormone-supplemented, serum-free medium for Madin Darby Canine Kidney (MDCK) cells (Medium K-1), is required for both long-term growth and for dome formation. Variant cells have been isolated from MDCK populations, which lack the PGE1, requirement for long-term growth in Medium K-1. These variants will be useful in identifying the molecular events initiated by PGE1 which are necessary for the growth response to be observed. The growth and functional properties of five independently isolated PGE1 independent clones have been examined. Normal MDCK cells grew at an equivalent rate in Medium K-1 and in serum-supplemented medium; the growth rate was lower in Medium K-1 lacking PGE1. In contrast, PGE1 independent clone 1 grew at an equivalent rate in Medium K-1 minus PGE1, and in serum-supplemented medium. When PGE1 was added to K-1 minus PGE1, less growth of PGE1 independent clone 1 was observed. A similar observation was made with one other PGE1 independent clone which was studied. A hormone deletion study indicated that PGE1 independent clone 1 still retained growth responses to the other four supplements in Medium K-1 (insulin, transferrin, T3, and hydrocortisone). The molecular alterations associated with loss of the PGE1 requirement for long-term growth were examined. At confluency, all of the PGE1 independent clones studied had higher intracellular cyclic AMP levels following PGE1 treatment, as compared with normal MDCK cells. The increased cyclic AMP levels in the variant cells could result from a number of different types of defects, including reduced cyclic adenylic acid (cyclic AMP) efflux, an increased affinity of PGE2 for the PGE1 receptor, or a defect in cyclic AMP metabolism. However, in all of the variant clones studied a decreased rate of cyclic AMP degradation by cyclic AMP phosphodiesterase was observed. Thus, the increased cyclic AMP levels in the PGE1 independent variants may result from alterations which affect cyclic AMP metabolism. The effect of PGE1 on dome formation by the variant cells was also examined. The frequency of dome formation by PGE1 independent clone 1 was enhanced in a dosage-dependent manner, like normal MDCK cells. This observation suggests that PGE1 affects MDCK cell growth and dome formation by different mechanisms.  相似文献   

11.
Cyclic AMP production by freshly isolated cells, from a 32P-induced transplantable rat osteogenic sarcoma, was stimulated by PGE1, PGE2 and to a less extent by PGF and PGA2. In the case of PGE2, the cyclic AMP content of cells was miximal within 5 min. The 13, 14-dihydro derivatives of PGE1, PGE2 and PGF had approximately 40% of the activity of the parent prostaglandin whilst, in every case, the metabolites (15-keto and 13,14-dihydro-15-keto) had very little activity. Two prostaglandin endoperoxide analogues (U44069 and U46619) had only 10% of the activity of an equimolar dose of PGE2. The data presented in this paper demonstrates similarities between the responses of these cells and cells derived from bony tissue in terms of the ability of prostaglandins to stimulate bone resorption in tissue culture.  相似文献   

12.
Abstract: Neuroblastoma × glioma hybrid cells increase their intracellular concentration of cyclic AMP in response to prostaglandin E1 (PGE1). This effect is inhibited by opioids. The response to PGE1 is positively correlated with the concentration of Ca2+ in the incubation medium. The Ca2+ antagonists Co2+ and La3+, the Ca2+ chelator EGTA and a blocker of Ca2+ influx into cells, Segontin, inhibit the response to PGE1. At low external concentrations of Ca2+ the response to PGE1 is enhanced by the Ca2+ ionophore A23187. The effects of A23187 and Segontin point to a cytosolic site of Ca2+ action. Lack of Ca2+ reduces the level of cyclic AMP even in the absence of PGE1 and the presence of an inhibitor of cyclic AMP phosphodiesterase. Ca2+ is required even for an increase in the level of cyclic AMP in cells pretreated with cholera toxin. The increases in level of cyclic AMP evoked by PGE, in a neuroblastoma and by PGE1 or noradrenaline in a glioma cell line do not depend on Ca2+. The response of the hybrid cells to the opioid leucine-enkephalin appears not to rely on the presence of Ca2+. Even changing the intracellular concentration of Ca2+ by the ionophore A23187 does not alter the effect of the opioid. The analogy between opioids and lack of Ca2+ in the short-term (minutes) experiments mentioned holds also for long-term (hours) experiments. Cells chronically exposed to opioids or to low concentrations of Ca2+ display an enhanced maximal response to PGE1.  相似文献   

13.
NORADRENALINE increases the intracellular concentration of adenosine 3′,5′-monophosphate (cyclic AMP)1,2 which, in turn, enhances glycogenosis3 and lipolysis4,5 in adipose tissue by increasing Phosphorylase and lipase activities. Prostaglandin E1 (PGE1) antagonizes the induced increases in Phosphorylase activity6,7 and glycerol release in human adipose tissues8,9 and isolated adipocytes7. The finding that the stimulatory effects of the cyclic AMP analogue N6—O2 dibutyryl cyclic AMP, which mimics the hormonal effect of noradrenaline in human fat cells, are not blocked by PGE17 suggests that noradrenaline and PGE1 alter fat cell metabolism by acting on the adenyl cyclase system10. Whether noradrenaline and PGE1 alter concentrations of cyclic AMP in human fat cells, however, has not been reported.  相似文献   

14.
Mouse resident peritoneal macrophages stimulated by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10−7M for PGI2 and 3 × 10−8M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

15.
The ability of prostaglandin I2 (PGI2) to stimulate cyclic AMP production by granulosa cells, isolated from intact immature rats, has been demonstrated in vitro. The minimal effective dose was 15 ng/ml, which was comparable to the minimal effective dose for PGE2. However, a concentration of 15 μg/ml PGI2 was required to stimulate cyclic AMP production maximally, compared to a concentration of 1 μg/ml PGE2, which produced the maximum response. It therefore appears that PGI2 is not more effective than PGE2 in stimulating cyclic AMP production in granulosa cells, and is possibly less effective. Submaximal concentrations of PGI2 appeared to be able to modify the stimulation of cyclic AMP production by follicle- stimulating hormone (FSH), but whether or not PGI2 plays any role in follicular function remains to be established.  相似文献   

16.
To gain further insight on the mechanism of GH secretion in general and on the stimulation of this process by prostaglandins in particular, we compared the effects of PGE1 and PGE2 on hormone release and cyclic nucleotide levels with those of the ionophores A23187 and X537A under a variety of experimental conditions. All these substances (in the presence but not in the absence of calcium) enhanced GH release in incubated rat anterior pituitaries , prostaglandins being considerably more potent than ionophores. However, while PGE2 caused a dose-dependent rise in pituitary cyclic AMP levels (from doubling at 10−7 M to a two-hundred fold increase at 10−5 M), the ionophores had no effect on the concentrations of this nucleotide. Neither PGE2 nor the ionophores had any measurable effect on cyclic GMP levels. Exposure of tissues to ionophores for 60 minutes rendered them refractory to subsequent stimulation by PGE1 or to ionophores themselves, whereas preincubation with PGE1 did not diminish GH responses during a second incubation period. On the other hand, 60-minute preincubation of hemipituitaries in the presence of ionophores (10−5 M) did not suppress subsequent PGE1-promoted cyclic AMP accumulation. Metabolic blockers inhibited PGE2 and A23187-promoted GH-release but failed to suppress GH-response to X537A. Verapamil partially inhibited PGE2 but not ionophore induced GH secretion. Ionophores particularly X537A, accelerated 45Ca efflux while PGE1 did not influence this. Electronmicroscopy revealed extensive vacuolization localized chiefly at the Golgi apparatus when tissues were incubated with X537A. PGE1 and A23187 had no such morphological effect. It is concluded that prostaglandins E and ionophores promote GH secretion by different mechanisms.  相似文献   

17.
The effect of PGE2 on the conversion of 25-hydroxyvitamin D3 (25 OH D3) to 1,25-dihydroxyvitamin D3 (1,25- (OH) 2D3) by isolated renal tubules from vitamin D deficient chicks was studied under a variety of experimental conditions. In the absence of added vitamin D metabolites, PGE2 (2 × 10−6M) caused an immediate inhibition of formation of 1,25-(OH) 2D3, followed by a delayed stimulation, apparent after 15 h exposure to PGE2. Pretreatment of the tubules with 1,25-(OH) 2D3 prevented the immediate inhibitory action of PGE2, and allowed the stimulation to be apparent after 4 h exposure to PGE2. The cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX) significantly stimulated the formation of 1,25-(OH) 2D3. PGE2 significantly inhibited 1,25-(OH) 2D3 formation in tubules which had been stimulated by IBMX. PGE2 stimulated the adenylate cyclase activity in a crude particulate fraction from the chick kidney, and raised cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) levels in the renal tubules.It is concluded that PGE2 can either stimulate or inhibit 1,25-(OH) 2D3 formation in chick renal tubules. The stimulatory effect may be partly due to elevation of cyclic AMP. The mechanism of the inhibitory effect requires further investigation.  相似文献   

18.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F and F have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1.Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

19.
Based upon the ability of the E-prostaglandins to stimulate cyclic AMP formation in a dose-related manner and the correlation between this property and their affinity for a membraneous receptor, the action of these prostaglandins was proposed to be expressed largely via cyclic AMP. The failure of the F-prostaglandins to demonstrate significant activity in these two parameters led to the suggestion that they must act at another receptor via a different mediator. The recent isolation of a receptor unique to PGF and the demonstrated ability of this prostaglandin to increase tissue cyclic GMP levels are consistent with this concept that the E-prostaglandins and PGF play distinctly different roles in cell regulation.  相似文献   

20.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号