首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding affinities for a range of epibatidine isomers and analogues at the alpha4beta2 and alpha3beta4 nAChR subtypes are reported; compounds having similar N-N distances to epibatidine show similar, high potencies.  相似文献   

2.
Synthesis and binding studies of some epibatidine analogues   总被引:1,自引:0,他引:1  
A series of epibatidine analogues and their positional isomers bearing an 8-azabicyclo[3.2.1]octane moiety is described. Some of the compounds, especially those containing 8-azabicyclo[3.2.1]oct-2-ene moiety show high affinity for the nicotinic cholinergic receptor.  相似文献   

3.
Homoepiboxidine (3) and the corresponding N-methyl (4) and N-benzyl (5) derivatives were prepared from a 6beta-carbomethoxynortropane (8). Affinities and functional activities at neuromuscular, central neuronal and ganglionic-type nicotinic receptors were compared to those of epibatidine 1, and epiboxidine 2. Homoepiboxidine had equivalent affinity/activity to epiboxidine at neuromuscular, neuronal alpha4beta2, and most alpha3-containing ganglionic-type nicotinic receptors. The N-substituted derivatives showed reduced affinity/activity at most receptor subtypes. Replacement of the methylisoxazole moiety of 3 and 4 with a methyloxadiazole moiety provided analogues 6 and 7, which had greatly reduced affinity/activity in virtually all assays at nicotinic receptors. Marked analgetic activity in mice occurred at the following ip doses: epibatidine 10 microg/kg; epiboxidine 25 microg/kg; homoepiboxidine 100 microg/kg; N-methylhomoepiboxidine 100 microg/kg; the methyloxadiazole (6) 100 microg/kg. The time course at such ip doses was significantly longer for homoepiboxidine 3 with marked analgesia still manifest at 30 min post-injection. Epiboxidine and the homoepiboxidines were less toxic than epibatidine.  相似文献   

4.
Ten analogues of 6'-chloro-3-benzylideneanabaseine (CBA) bearing substituents at the ortho- and the para-positions of the phenyl group were synthesized, together with two related compounds. The affinity of the synthesized compounds for nicotinic acetylcholine receptors (nAChRs) in the nerve cord of the American cockroach (Periplaneta americana L.) was examined by the radioligand binding assay using [(3)H]epibatidine (EPI), a nAChR agonist. All 12 tested compounds inhibited [(3)H]EPI binding, showing K(i) values ranging from 14.6 to 6830nM. The potency variation of para-substituted CBA analogues was explained by the steric (Delta B(1)) and electronic (sigma(p)) parameters of the para-substituents, or by the steric parameter and the charge of the N1 nitrogen atom (qN(1)). Among the CBA analogues, only two compounds containing a dimethylamino group and a methoxy group at the para-position showed high insecticidal activity against the German cockroach (Blattella germanica) when injected after pretreatment with metabolic inhibitors. High-affinity analogues of CBA might be suitable probes for use in classifying and characterizing insect nAChR subtypes.  相似文献   

5.
A series of epibatidine analogues was synthesized and characterized in vitro. These compounds are high affinity ligands for the nicotinic acetylcholine receptors (nAChR). They display binding selectivity for the alpha(x)beta2 subtypes of nAChRs over the alpha(x)beta4 subtypes, and especially for the alpha4beta2 and alpha2beta2 subtypes. Furthermore, most of these new nicotinic compounds display little, if any, agonist activities at alpha3beta4 nAChR. As a result they might become lead structures for the design and synthesis of highly selective ligands for nAChR subtypes containing the beta2 subunit.  相似文献   

6.
The effect of the nicotinic acetylcholine receptors (nAChRs) agonist (+/-)epibatidine on the modulation of dopamine (DA) release was investigated by microdialysis in vivo in the frontal cortex and the nucleus accumbens of naive and chronic nicotine-treated awake rats. (+/-)Epibatidine (2.5 microg/kg, s.c.), contrary to (-)nicotine (0.5 mg/kg, s.c.), decreased the extracellular concentrations of DA in the brain of naive rats. Subchronic nicotine treatment (0.45 mg/kg, s.c., twice daily for 7 days) attenuated the (+/-)epibatidine induced decrease in the DA level. The extracellular concentrations of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were elevated by (+/-)epibatidine administration in both na?ve and subchronic treated rats. The findings suggest that the decrease in DA extracellular concentrations induced by the high affinity nAChRs agonist (+/-)epibatidine might be due to inactivation of nAChRs, which can be overcome by subchronic treatment with nicotine. Different mechanisms in modulation of DA release appears to be involved in the rat brain by (+/-)epibatidine compare to (-)nicotine.  相似文献   

7.
We recently showed that at desensitized muscle nicotinic receptors, epibatidine selects by 300-fold between the two agonist binding sites. To determine whether receptors in the resting, activatible state show similar site selectivity, we studied epibatidine-induced activation of mouse fetal and adult receptors expressed in 293 HEK cells. Kinetic analysis of single-channel currents reveals that (-)-epibatidine binds with 15-fold selectivity to sites of adult receptors and 75-fold selectivity to sites of fetal receptors. For each receptor subtype, site selectivity arises solely from different rates of epibatidine dissociation from the two sites. To determine the structural basis for epibatidine selectivity, we introduced mutations into either the gamma or the delta subunit and measured epibatidine binding and epibatidine-induced single-channel currents. Complexes formed by alpha and mutant gamma(K34S+F172I) subunits bind epibatidine with increased affinity compared to alphagamma complexes, whereas the kinetics of alpha2betadeltagamma(K34S+F172I) receptors reveal no change in affinity of the low-affinity site, but increased affinity of the high-affinity site. Conversely, complexes formed by alpha and mutant delta(S36K+I178F) subunits bind epibatidine with decreased affinity compared to alphadelta complexes, whereas the kinetics of alpha2betagammadelta(S36K+I178F) and alpha2betaepsilondelta(S36K+I178F) receptors show markedly reduced sensitivity to epibatidine. The overall data show that epibatidine activates muscle receptors by binding with high affinity to alphagamma and alphaepsilon sites, but with low affinity to the alphadelta site.  相似文献   

8.
Neuronal nicotinic acetylcholine receptors (nAChRs) were measured in CNS and peripheral tissues following continuous exposure to saline or nicotine hydrogen tartrate (3.3 or 10 mg/kg/day) for 14 days via osmotic pumps. Initially, binding of [3H](-)nicotine, [3H]cytisine and [3H]epibatidine to nAChRs was compared to determine the suitability of each for these kinds of studies. The predominant nAChR labeled by agonists in the cerebral cortex is an alpha 4 beta 2 subtype, whereas the predominant nicotinic receptors in the adrenal gland, superior cervical ganglia and pineal gland contain an alpha 3 subunit, and they do not bind either [3H](-)nicotine or [3H]cytisine with high affinity. In retina some nAChRs bind all three ligands with high affinity, and others appear to bind only [3H]epibatidine. Thus, only [3H]epibatidine had high enough affinity to be useful for measuring the nAChRs in all of the tissues. The receptors from nicotine-treated rats were then measured using [125I]epibatidine, which has binding characteristics very similar to [3H]epibatidine. Treatment with the two doses of nicotine hydrogen tartrate increased binding sites in the cerebral cortex by 40% and 70%, respectively. In contrast, no significant changes in the density of receptor binding sites were found in the adrenal gland, superior cervical ganglia, pineal gland or retina. These data indicate that chronic administration of nicotine even at high doses does not increase all nicotinic receptor subtypes, and that receptors containing alpha 3 subunits may be particularly resistant to this nicotine-induced change.  相似文献   

9.
The toxicity of organophosphorus nerve agents or pesticides arises from accumulation of acetylcholine and overstimulation of both muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) due to inhibition of acetylcholinesterase (AChE). Standard treatment by administration of atropine and oximes, e.g., obidoxime or pralidoxime, focuses on antagonism of mAChRs and reactivation of AChE, whereas nicotinic malfunction is not directly treated. An alternative approach would be to use nAChR active substances to counteract the effects of accumulated acetylcholine. Promising in vitro and in vivo results were obtained with the bispyridinium compounds SAD-128 (1,1′-oxydimethylene bis(4-tert-butylpyridinium) dichloride) and MB327 (1,1′-(propane-1,3-diyl)bis(4-tert-butylpyridinium) di(iodide)), which were partly attributed to their interaction with nAChRs. In this study, a homologous series of unsubstituted and 4-tert-butyl-substituted bispyridinium compounds with different alkane linker lengths was investigated in competition binding experiments using [3H]epibatidine as a reporter ligand. Additionally, the effect of the well-characterised MB327 on the [3H]epibatidine equilibrium dissociation (KD) constant in different buffers was determined. This study demonstrated that divalent cations increased the affinity of [3H]epibatidine. Since quaternary ammonium molecules are known to inhibit AChE, the obtained affinity constants of the tested bispyridinium compounds were compared with the inhibition of human AChE. In competition experiments, bispyridinium derivatives of longer linker length displaced [3H]epibatidine and inhibited AChE strongly. Bispyridinium compounds with short linkers, at most, have an allosteric interaction with the [3H]epibatidine binding sites and barely inhibited AChE. In dependence on alkane linker length, the bispyridinium compounds seemed to interact at different binding sites. However, the exact binding sites of the bispyridinium compounds responsible for the positive pharmacological effects have still not been identified, making predictive drug design difficult.  相似文献   

10.
The frog toxin epibatidine is one of the most powerful ligands of the neuronal nicotinic receptors and derivatives show promising possibilities for labeling in positron emission tomography studies. In an attempt to reduce epibatidine toxicity, new methyl derivatives were synthesized, tested in positron emission tomography imaging and in electrophysiology. labeling as well as physiological experiments highlighted the differences in sensitivity of the neuronal nicotinic acetylcholine receptors between two methyl enantiomers and the reduction in sensitivity caused by introducing the methyl group. At present, epibatidine derivatives seem the most promising compounds for in vivo labeling of neuronal nicotinic acetylcholine receptors.  相似文献   

11.
Free RB  Wenger BW  McKay DB 《Life sciences》2000,68(4):373-385
The importance of disulfide bridges in muscle nicotinic receptors is well established; however, for neuronal nicotinic receptors, the effects of sulfhydryl modification are less definitive. In these studies the effects of treatment with the mild reducing agent, dithiothreitol, on adrenal nicotinic receptors are described. We have found that following dithiothreitol treatment, adrenal chromaffin cells retained the ability to be stimulated by a variety of nicotinic receptor agonists including nicotine, acetylcholine, cytisine, epibatidine, and bromoacetylcholine. However, with dithiothreitol treatment, changes in apparent affinities were seen with two agonists, epibatidine and bromoacetylcholine. These effects of dithiothreitol on apparent affinities were concentration-dependent and reversible upon treatment with an oxidizing agent. Dithiothreitol treatment also produced effects on secretion that were independent of nicotinic receptor activation. Our results are unlike those in other tissues containing nicotinic receptors and suggest that subunit composition of nicotinic receptors influences the functional outcome of sulfhydryl modification.  相似文献   

12.
The synthesis of epibatidine derivatives modified at the 2-position of the pyridine or pyrimidine rings by reactive functions are described for potential irreversible site-directed coupling reactions on cysteine mutants of neuronal nicotinic acetylcholine receptors. An improved synthesis of the 7-azabicyclo[2,2,1]hepta-2,5-diene key intermediate has been developed to allow reproducible syntheses of the epibatidine derivatives. Binding tests and electrophysiological experiments allowed to select the 2-substituted alpha-chloroacetamido 13 and the chloropyrimidine derivative 11 as potential site-directed probes for the epibatidine binding site.  相似文献   

13.
A series of bivalent ligands 6a-d of epibatidine were synthesized. All four ligands showed nanomolar binding affinities at six neuronal nicotinic acetylcholine receptor (nAChR) subtypes in competition binding assays. In contrast to epibatidine, these bivalent ligands are weak partial agonists at the alpha3beta4 nAChR as shown by functional assays.  相似文献   

14.
The binding constants (K(i) values) of 24 caracurine V and 6 iso-caracurine V analogues for the muscle type of nicotinic ACh receptors (nAChR) from Torpedo californica were determined in a binding assay using (+/-)-[(3)H]epibatidine as a radioligand. The allyl alcohol group present in the iso-caracurine V ring system was found to be essential for high binding affinity. The most potent compounds are the dimethyl and di-(4-nitrobenzyl)-iso-caracurinium V salts 29 (18 nM), and 31 (79 nM), respectively. Compound 29 and the corresponding diallyl analogue 30 (350 nM) exhibited similar binding affinities as the equally substituted neuromuscular-blocking agents toxiferine I (14 nM) and alcuronium (234 nM), respectively. The SAR results were confirmed by QSAR studies, which additionally revealed that the presence of hydrogen-bond acceptor groups close to the quaternary nitrogen, is detrimental for the nicotinic binding affinity. The diallyl- and dimethylcaracurinium V salts 13 and 27, respectively, which are known to be among the most potent allosteric modulators of M(2) receptors (EC(50)=10 and 8nM, respectively), exhibited rather low nicotinic binding affinities for muscle type nAChR (K(i)=1.5 and 5.2 microM, respectively). Such a large difference in affinity suggests that it is possible to develop compounds with high muscarinic allosteric potency and low or negligible affinities for (alpha1)(2)beta1gammadelta nAChR. Additionally, the iso-caracurine V analogues with binding affinities comparable to those of (+)-tubocurarine and alcuronium could become a new class of neuromuscular-blocking agents.  相似文献   

15.
Hydrochloride derivatives 5a–c and quaternary ammonium derivatives 6a–c of epibatidine incorporated with amino acid ester were synthesized and evaluated for their in vivo analgesic activity and toxicity. Among all tested compounds, compound 6c has the most potent analgesic activity. The quaternary ammonium salts 6a and 6c showed better analgesic activity than the corresponding hydrochlorides 5a and 5c. Both 5a–c and 6a–c showed significantly lower toxicity than epibatidine itself.  相似文献   

16.
Chronic nicotine exposure up-regulates neuronal nicotinic receptors, but the functional consequences for these receptors is less well understood. Following 2 weeks of nicotine or saline treatment by osmotic minipump, the functional activity of nicotinic receptors was measured by concentration-response curves for epibatidine-stimulated (86)Rb efflux. Nicotine-treated animals had a significantly higher maximal efflux in cerebral cortex and superior colliculus, but not in thalamus or interpeduncular nucleus plus medial habenula. This increase was confirmed in a separate experiment with stimulation by single concentrations of epibatidine (cortex, superior colliculus) or nicotine (cortex only). Chronic nicotine did not alter (86)Rb efflux stimulated by cytisine, an alpha3beta4-selective agonist, or by potassium chloride, in any region. Short-term (16 h) nicotine exposure caused no changes in either (86)Rb efflux or receptor binding measured with [(3)H]epibatidine. Binding was significantly increased after 2 weeks nicotine exposure in cortex, superior colliculus and thalamus, but not in interpeduncular nucleus plus medial habenula. The increases in epibatidine-stimulated (86)Rb efflux in the four regions tested was linearly correlated with the increases in [(3)H]epibatidine binding in these regions (R(2) = 0.91), suggesting that rat brain receptors up-regulated by chronic nicotine are active. These results have important consequences for understanding nicotinic receptor neurobiology in smokers and users of nicotine replacement therapy.  相似文献   

17.
Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of (125)I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT(3)Rs) block the remaining 25%. (125)I-Epibatidine binds with a high affinity to native 5-HT(3)Rs of N1E-115 cells and to receptors composed of only 5-HT(3A) subunits expressed in HEK cells. In these cells, serotonin, the 5-HT(3)R-specific antagonist MDL72222, and the 5-HT(3)R agonist chlorophenylbiguanide readily competed with (125)I-epibatidine binding to 5-HT(3)Rs. Nicotine was a poor competitor for (125)I-epibatidine binding to 5-HT(3)Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of (125)I-epibatidine binding to 5-HT(3)Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT(3)Rs in neuroblastoma cell lines and 5-HT(3A)Rs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT(3)Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT(3)R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT(3)Rs.  相似文献   

18.
Several cholinesterase inhibitors used in the treatment of Alzheimer's disease (AD) have been shown to interact with an allosteric site on the nicotinic acetylcholine receptor (nAChR). A possible linkage between the phosphorylation state of tau, the major component of paired helical filaments found in AD brain, and stimulation of nAChRs by cholinesterase inhibitors and nicotinic agonists was investigated. Western blot analysis showed that treatment of SH-SY5Y cells for 72 h with the cholinesterase inhibitors tacrine (10(-5) M), donepezil (10(-5) M), and galanthamine (10(-5) M), nicotine (10(-5) M), and epibatidine (10(-7) M) increased tau levels as detected with Tau-1, AT 8, and AT 270 monoclonal antibodies and binding of [3H]epibatidine. The increase in tau immunoreactivity induced by nicotine, epibatidine, and tacrine, but not the up-regulation of nAChRs, was prevented by the antagonists d-tubocurarine and mecamylamine. Both antagonists were synergistic with the nicotinic agonists in causing up-regulation, but only d-tubocurarine showed a synergistic effect with tacrine. The increased tau immunoreactivity induced by tacrine was not prevented by atropine, indicating that in terms of cholinergic receptors, tacrine modulates tau levels mainly through interactions with nAChRs and not with muscarinic receptors. Additional work is needed to determine the exact mechanism by which cholinesterase inhibitors and nicotinic agonists modulate phosphorylation and levels of tau protein.  相似文献   

19.
Comparison of [125I]epibatidine and 5-[125I]iodo-3-(2-azetidinylmethoxy)pyridine ([125I]A-85380) autoradiography showed evidence for nicotinic receptor heterogeneity. To identify the receptor subtypes, we performed [125I]epibatidine autoradiography in the presence of cytisine or A-85380. By comparing these results with binding data from human embryonic kidney (HEK) 293 cells stably transfected with different combinations of rat nicotinic receptor subunits, we were able to quantify three distinct populations of [125I]epibatidine binding sites with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 receptors. Although the predominant subtype in rat brain was alpha4beta2, non-alpha4beta2 binding sites were prominent in many regions. In the habenulo-peduncular system, cerebellum, substantia gelatinosa, and many medullary nuclei, alpha3beta4-like binding accounted for more than 40% of [125I]epibatidine binding, and nearly all binding in superior cervical ganglion and pineal gland. Other regions enriched in alpha3beta4-like binding included locus ceruleus, dorsal tegmentum, subiculum and anteroventral thalamic nucleus. Regions enriched in alpha3beta2-like binding included the habenulo-peduncular system, many visual system structures, certain geniculate nuclei, and dopaminergic regions. The combination of autoradiography using a broad spectrum radioligand in the presence of selective competitors, and data from binding to defined receptor subtypes in expression systems, allowed us to quantify the relative populations of these three subtypes.  相似文献   

20.
Neuronal nicotinic receptors (nAChRs) are expressed in the brain but also in the peripheral tissues including the adrenal medulla. However, it is unclear which nAChRs are present in the human adrenal medulla. In the study, receptor binding assay, Western blot and RT-PCR have been performed to investigate the expression of nAChRs in adrenal medulla from human, rat and mouse. The results showed that in human adult adrenal medulla, mRNAs for nAChR alpha3, alpha4, alpha5, alpha7, beta2, beta3, and beta4 subunits but not beta2 in the fetal human adrenal medulla were expressed. Saturation binding of [3H]epibatidine showed two binding sites in human aged adrenal medulla. The specific binding of [3H]epibatidine (0.1 nM) was significantly higher in human fetal compared to human aged adrenal medulla. mRNAs for the alpha3, alpha4, alpha5, alpha7, beta2, and beta4 subunits but not the beta3 were detectable in adult rat and mouse adrenal medulla. No differences in gene-expression of the nAChRs were observed between new born, adult and aged rat adrenal medulla. Saturation binding of [3H]epibatidine showed only one binding site in rat adrenal medulla. Lower protein levels for the nAChR subunits were observed in the rat adrenal medulla compared to rat brain. There was lower protein levels of the nAChRs in aged rat adrenal medulla compared to the young rats. Sub-chronic treatment of nicotine to rats did not influence level of the nAChRs in the adrenal medulla. In conclusion, the expression of nAChRs in adrenal medulla is age- related and species dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号