首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine application in concentration of 10(-5)-10(-6) M into saline around the snail CNS leads to decrease of excitability of LPa7 neurone which is presynaptic in relation to defensive behaviour command neurones, and to decrease of amplitude of monosynaptic excitatory postsynaptic potential (EPSP) in the command neurones elicited by intracellular stimulation of LPa7 neurone. Besides, the dopamine causes a decrease of summated EPSP amplitude in the studied neurones in response to intestinal nerve stimulation (70% in average), a change of rest potential towards hyperpolarization for 6-8 mV, a reduction of the command neurones input resistance (20% in average). The described influences can lead to a general increase of the threshold of defensive system reaction to stimulation. Dopamine action on the defensive behaviour command neurones is significantly weakened in serotonine presence. Against the dopamine background, the efficiency of serotonine influence on the value of EPSP in command neurones in response to testing stimulus is reduced. According to the obtained data, a conclusion is made that interrelation of dopamine and serotonine concentrations can be a base for formation of behaviour choice in snail.  相似文献   

2.
Morphine, added to the extracellular solution in a concentration of 1·10–5 M, quickly and reversibly weakens the depolarizing and hyperpolarizing responses of neurons of the snailHelix lucorum evoked by 1·10–6 M serotonin. The inhibitory effect of morphine is completely abolished by the addition of naloxone (1·10–5 M), suggesting that opiate receptors are involved in the process. Interaction between morphine and serotonin is noncompetitive in type, as is shown by the character of the dose-effect curves recorded during the action of serotonin before and after morphine application.Institute of Psychiatry, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 589–593, November–December, 1981.  相似文献   

3.
Possible role of cGMP is studied in control of extinction of snail neurones RPa4, RPa3 and LPa3 reactions to acetylcholine (ACh), applied rhythmically to neurone soma by means of microiontophoresis. It is shown that guanylate cyclase activators which raise the cGMP level in the cell--Na nitroprusside and Na azide (5,10(-4)-10(-3) mol/l)--intensify at extracellular application the extinction of inward transmembrane current and membrane depolarization in response to ACh. Suggestion is made about participation of cGMP-dependent phosphorylation of membrane proteins in control of the development rate, depth and duration of neurone cholinoreceptors short-term plasticity.  相似文献   

4.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

5.
6.
7.
8.
Heteroreceptor posttetanic changes in excitatory postsynaptic currents (EPSC) and inward currents evoked by the local iontophoretic application of acetylcholine (ACh) on the dorsal surface of PLa3 and PRa3 Helix lucorum neurons were studied. The following changes in the currents were revealed over the course of 1-1.5 h after tetanization. The rhythmical ACh application (0.5-1.0 cps, 10-40 s) evokes potentiation of the orthodromic EPSC. The tetanic orthodromic stimulation of one of the nerves (n. intestinalis, n. pallialis dexter, or n. pallialis sinister; 1-5 cps, 1-2 min) causes the potentiation of the ACh current and also heterosynaptic depression of the EPSC. It is concluded that activation of subsynaptic and nonsynaptic neurotransmitter chemoreceptors evokes the development of generalized posttetanic changes in neuronal responses.  相似文献   

9.
1. The electrophysiological actions of excitatory amino acids and serotonin were investigated in slices from cat neocortex in vitro. Intracellular recordings were obtained from neurons (mainly in layer V) and the drugs applied extracellularly to the same neurons by microiontophoresis. 2. Serotonin, and to some extent noradrenaline, facilitated the excitatory actions of N-methyl-D-aspartate (NMDA), glutamate, and quisqualate but caused no changes in the passive neuronal membrane properties when presented alone. Serotonin had no effect on evoked excitatory postsynaptic potentials (EPSPs) or spike afterhyperpolarizations. 3. The facilitatory effect of serotonin on the responses to NMDA was observed with both somatic and dendritic applications. It persisted during Mg2+ depletion and in the presence of tetrodotoxin and tetraethylammonium. The effect was attenuated by the serotonin antagonist cinanserin but not by methysergide. A possible underlying receptor modulation is discussed.  相似文献   

10.
cAMP-dependence of synaptic depression and facilitation was investigated in functionally identified synaptic connection in the snail. It was found that 5 mM imidazole (phosphodiesterase activator) as well as 2 mM tolbutamide (inhibitor of cAMP-dependent protein kinase) do not change the rate of EPSPs depression during rhythmic (0.1 Hz) nerve stimulation, and do not affect facilitation. But treatment with both these drugs decreases EPSPs amplitude. Possibility of cAMP-dependent modulation of synaptic effectiveness is discussed.  相似文献   

11.
Thrombin acts on mammalian cells through specific, the so-called protease-activated receptors (PARs). The thrombin action is mediated via three out of four known types of these receptors PAR(1, 3, 4). Mammalian thrombin receptors, apart from performance of other functions, control cardiac and vascular contractility. It is not known whether receptors of such kind exist in invertebrate animals. In the present work we have showed for the first time that thrombin in the concentration range of 0.01-1 units/ml increases amplitude of contractions of the isolated heart ventricle of the edible snail Helix pomatia. Its effect is reproduced by peptide ligands of receptors PAR1 and PAR4 that have sequences Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN) and Glu-Tyr-Pro-Gly-Lys-Phe (QYPGKF), respectively. A potent activati of cardiac contractivity of H. pomatia is serotonin. A comparative study of mechanisms of action of serotonin and thrombin on the edible snail heart was carried out. cAMP participates in transduction of signal from serotonin receptors. On the membrane preparation from the H. pomatia heart, it was shown that thrombin and peptide ligands PAR(1, 4), unlike serotonin, did not increase adenylyl cyclase activity. Thus, mechanism of activation of cardiac contractivity of H. pomatia by thrombin differs from the action mechanism of serotonin. It is suggested that molluscs have receptors homologous to protease activated mammalian receptors.  相似文献   

12.
13.
The recording of transmembrane currents and intracellular potentials has been used to show on Helix lucorum identified neurons RPa4, RPa3 and LPa3, that pharmacologic effects on adenylate cyclase system do not influence the extinction of neuronal response to repeated local iontophoretic applications of acetylcholine to the soma. Neither cAMP-raising adenylate cyclase activator forskolin (2-6 x 10(-5) mol/l), nor cAMP-lowering phosphodiesterase activator imidazole (5 x 10(-3) mol/l) alter the dynamics of extinction of response to acetylcholine. A conclusion has been made that shortterm plasticity of cholinoreceptors in the investigated neurons is independent of intracellular cAMP level.  相似文献   

14.
Literary and experimental data are summarized on organization of defensive behaviour in Helix. Muscular and neuronal mechanisms participating in this form of behaviour are reviewed.  相似文献   

15.
In the paper are presented the results of the experiments with the retrograde staining of the left-side cutaneous nerves of the pedal ganglia of the snail Helix lucorum. The somata of neurons which sent processes forming the studied nerves were revealed with the help of nickel and cobalt ions precipitation by the rubeanic acid. A lot of nerve cells including some command neurons were found in all the ganglia excluding the buccal ones. Especially large amount of neurons was stained in the ipsilateral pedal, pleural, and parietal ganglia.  相似文献   

16.
The effects of serotonin (5-HT) added to the washing solution on the plastic properties of the electroexcitable membrane of nonidentified neurons of the parietal ganglion and identified neurons RPa2 are studied on the isolated nervous system of the snail. The neurons of the first group, which became rapidly habituated to the intracellular stimulation, are shown to manifest the ability to restore action potential generation in the presence of 5-HT. In contrast, the neurons possessing endogenous rhythmic activity (RPa2) in the presence of 5-HT generate burst activity against the background of the development of slow waves of the membrane potential. A comparative analysis of the effect of 5-HT and compounds with a known effect on Ca2+ and the calcium-dependent potassium channels (quinine, CoCl2 and CdCl2) points to the existence of various mechanisms providing for the serotoninergic regulation of the plasticity of the electroexcitable neuron membrane. This difference stems from the processes of activation and blockade of the Ca-dependent mechanisms.A. I. Karaev Institute of Physiology Azerbaizhan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 286–290, May–June, 1992.  相似文献   

17.
Responses induced by a perfusion by a solution with oxytocin were examined in identified Helix pomatia L. neurons. Depolarizing, hyperpolarizing, and modulatory neuronal responses were observed. The responses under study were supposed to be associated in most of the cases with the system of cyclic nucleotides.  相似文献   

18.
Heterosynaptic potentiation of cholinergic excitatory postsynaptic currents and potentials evoked by electrical stimulation of visceral mass was discovered in command Helix neurons of escape reaction. The results suggest the involvement of mechanism of an increase in cholinosensitvity in postsynaptic membrane zones in potentiation of excitatory postsynaptic responses to sensory stimulation.  相似文献   

19.
20.
The ability of apple snail giant neurons to generate action potentials in solutions that lack sodium ions is associated with the input resistance of these neurons in such a way that the higher the input resistance is, the more pronounced is this ability. Neurons in which this ability is well expressed usually exhibit low resting potential values and a slow repolarization phase. When calcium ions are replaced with barium ions, the neurons retain their excitability in a sodium-free medium for a longer period of time. Raising the calcium ion concentration to 30 µmole may exert a restorative effect on neurons that have lost their excitability in a solution that originally lacked sodium ions but contained 10 µmole of calcium ions. Increasing the calcium ion concentration to 60 µmole leads to loss of excitability, which under these conditions can be restored by means of depolarizing the neuron with an outward current. The results are discussed from the point of view of the theory of ionic conductivity of the surface membrane of neurons. It is hypothesized that the ability of the surface membrane of neurons to make use of sodium or calcium ions in generation of action potentials depends upon its permeability to potassium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 100–106, January–February, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号