首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Fenna-Matthews-Olson (FMO)-protein and the FMO-reaction center (RC) core complex from the green sulfur bacterium Chlorobium tepidum were examined at 6 K by absorption and fluorescence spectroscopy. The absorption spectrum of the RC core complex was obtained by a subtraction method and found to have fiye peaks in the QY region, at 797, 808, 818, 834 and 837 nm. The efficiency of energy transfer from carotenoid to bacteriochlorophyll a in the RC core complex was 23% at 6 K, and from the FMO-protein to the core it was 35%. Energy transfer from the FMO-protein to the core complex was also measured in isolated membranes of Prosthecochloris aestuarii from the action spectra of charge separation. Again, a low efficiency of energy transfer was obtained, both at 6 K and at room temperature.Abbreviations BChl- bacteriochlorophyll - P840- primary electron donor - RC- reaction center - FMO-protein- Fenna-Matthews-Olson-protein  相似文献   

2.
A new and rapid procedure has been developed for the isolation of the bacteriochlorophyll a-containing Fenna—Matthews—Olson (FMO)-protein from green sulfur bacteria. Polyclonal antibodies raised against the FMO-protein of Chlorobium (Chl.) tepidum were employed in the preparation of an antibody column utilizing immobilized protein A as the matrix. The antibody column afforded essentially a one-step purification process, resulting in preparations that were free from contaminating pigments and proteins. This was evidenced by absorption spectroscopy, SDS—PAGE, and fluorescence emission.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria.  相似文献   

4.
Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM−1 cm−1 for methanol and 97.0 mM−1 cm−1 for diethylether in the QY maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 132-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a QY region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a QY transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807–809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO–RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Green sulfur bacteria (GSB) rely on the chlorosome, a light-harvesting apparatus comprised almost entirely of self-organizing arrays of bacteriochlorophyll (BChl) molecules, to harvest light energy and pass it to the reaction center. In Chlorobaculum tepidum, over 97% of the total BChl is made up of a mixture of four BChl c homologs in the chlorosome that differ in the number and identity of alkyl side chains attached to the chlorin ring. C. tepidum has been reported to vary the distribution of BChl c homologs with growth light intensity, with the highest degree of BChl c alkylation observed under low-light conditions. Here, we provide evidence that this functional response at the level of the chlorosome can be induced not only by light intensity, but also by temperature and a mutation that prevents phototrophic thiosulfate oxidation. Furthermore, we show that in conjunction with these functional adjustments, the fraction of cellular volume occupied by chlorosomes was altered in response to environmental conditions that perturb the balance between energy absorbed by the light-harvesting apparatus and energy utilized by downstream metabolic reactions.  相似文献   

6.
Green sulfur photosynthetic bacteria Chlorobium (Chl.) vibrioforme (DSM 263 strain and NCIB 8327 substrain possessing BChl-c) and Chl. tepidum (ATCC 49652) were photoautotrophically grown in liquid cultures containing different concentrations of sodium sulfide (Na2S). BChl-c homologs possessing a methyl group at the 12-position tended to increase in cells of the two strains of Chl. vibrioforme cultured under high Na2S concentrations. In contrast, the Na2S concentration in liquid cultures did not affect the relative composition of BChl-c homologs in Chl. tepidum. 8-Propyl-12-methyl([P,M])-BChl-c homolog, which has been little observed in usual cultivations, could be isolated by reverse-phase high-performance liquid chromatography from the cells of Chl. vibrioforme grown under high Na2S contents. The [P,M]-BChl-c homolog has the R-configuration at the 31-position, which was determined by 1H-NMR analyses.  相似文献   

7.
The purple photosynthetic bacterium Thermochromatium tepidum is a moderate thermophile, with a growth optimum of 48–50 °C. The X-ray crystal structure of the reaction centre from this organism has been determined, and compared with that from mesophilic bacteria such as Blastochloris viridis and Rhodobacter sphaeroides (Nogi T et al. (2000) Proc Natl Acad Sci USA 97: 13561–13566). Structural features that could contribute to the enhanced thermal stability of the Thermochromatium tepidum reaction centre were discussed, including three arginine residues exposed at the periplasmic side of the membrane that are not present in reaction centres from mesophilic organisms, and potentially could increase the affinity of the complex for the surrounding membrane. In the present report these arginine residues, plus a histidine identified from an extensive sequence alignment, were engineered into structurally homologous positions in the Rhodobacter sphaeroides reaction centre, and the effect on the thermal stability of the Rhodobacter sphaeroides complex was examined. We find that these residues do not enhance the thermal stability of the reaction centre, as assessed by absorbance spectroscopy of the bacteriochlorin cofactors in membrane-bound reaction centres. Possible roles of these residues in the Thermochromatium tepidum reaction centre are discussed, and it is proposed that they facilitate stronger binding of the reaction centre to the encircling LH1 antenna complex, through ionic interactions with acidic residues at the C-terminal end of the LH1 α-polypeptide. Such an interaction could enhance the stability of the so-called ‘RC–LH1 core’ complex that is formed between the reaction centre and the LH1 antenna, and which represents the minimal functional photosynthetic unit in all known purple photosynthetic bacteria. Stronger bonding interactions between the two complexes could also contribute to an increase in the rigidity of the photosynthetic membrane in Thermochromatium tepidum, in accord with the general finding that the cytoplasmic membrane from thermophilic eubacteria is less fluid than its counterpart in mesophilic bacteria.  相似文献   

8.
The polarization anisotropy of fluorescence spectra from single chlorosomes isolated from a green sulfur bacterium, Chlorobium (Cb.) tepidum, was observed at 13 K. As the polarizer was rotated, the intensities of the fluorescence bands of both bacteriochlorophyll (BChl)-c self-aggregates and BChl-a in baseplate proteins showed clear oscillations. From the oscillation, the values of the degree of polarization (DP) and the phase shift (PS) between the BChl-c and BChl-a bands were determined for each single chlorosome. The DP versus PS plot for Cb. tepidum chlorosomes showed linear correlations between the PS and the DP values for both BChl-c and BChl-a fluorescence bands. This tendency could be explained from a simulation assuming a random orientation of chlorosomes and a triaxial orientation distribution of emitting transition dipoles within a single chlorosome. The intensity ratios among the X-/Y-/Z-principal transition dipoles were estimated to be 0.3/0.5/1 and 1/0.6/0.1 for the BChl-c and BChl-a fluorescence bands, respectively. Here, the X-, Y-, and Z-axes are perpendicular, parallel to the cytoplasmic membrane, and parallel to the chlorosome long axis, respectively. A theoretical calculation based on the exciton theory was conducted to reproduce the observed triaxial orientation distribution of emitting transition dipoles. The simulation revealed that a deformation introduced to the circular cross section of the rod-shaped BChl-c self-aggregates could qualitatively reproduce results of this study.  相似文献   

9.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

10.
Structural aspects of the core antenna in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum were studied by means of fluorescence emission and singlet-singlet annihilation measurements. In both species the number of bacteriochlorophylls of the core antenna between which energy transfer can occur corresponds to one core-reaction center complex only. From measurements of variable fluorescence we conclude that in C. tepidum excitation energy can be transferred back from the core antenna (B920) to the peripheral B800–850 complex in spite of the relatively large energy gap, and on basis of annihilation measurements a model of separate core-reaction center units accompanied by their own peripheral antenna is suggested. C. vinosum contains besides a core antenna, B890, two peripheral antennae, B800–820 and B800–850. Energy transfer was found to occur from the core to B800–850, but not to B800–820, and it was concluded that in C. vinosum each core-reaction center complex has its own complement of B800–850. The results reported here are compared to those obtained earlier with various strains and species of purple non-sulfur bacteria.Abbreviations BChl- bacteriochlorophyll - B800–820 and B800–850- antenna complexes with Qy-band absorption maxima near 800 nm and 820 or 850 nm, respectively - B890 and B920- antenna complexes with Qy-band absorption maxima near 890 and 920 nm, respectively - LH1- light harvesting 1 or core antenna - LH2- light harvesting 2 or peripheral antenna  相似文献   

11.
Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (Chloroflexales), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.  相似文献   

12.
In 1961 the green sulfur bacterium-containing mixed culture known asChloropseudomonas ethylicum was brought to Brookhaven National Laboratory (USA) from Moscow State University (USSR). The water-soluble bacteriochlorophylla-protein (FMO-protein) was extracted, purified and characterized by absorption and circular dichroism spectroscopy, by X-ray crystallography and by primary structure determination.  相似文献   

13.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria.  相似文献   

14.
【目的】通过理性改造柠檬酸合酶(citrate synthase,CS)、丙酮酸脱氢酶系E1p (pyruvate dehydrogenase complex,PDHC,编码基因aceE)和ATP-柠檬酸裂解酶(ATP-Citrate lyase,ACL),有效供应胞内丙酮酸和乙酰-CoA,以提高L-亮氨酸产量。【方法】以谷氨酸棒杆菌(Corynebacterium glutamicum)为底盘细胞,分析不同CS和PDHC酶活水平对L-亮氨酸合成的影响。随后,考查协同改造CS和PDHC或引入绿硫菌(Chlorobium tepidum)中ACL对L-亮氨酸合成的影响。【结果】低强度的CS酶活(即重组菌XL-3 P_(dapA-R2)gltA)有利于L-亮氨酸的合成,L-亮氨酸产量达到17.5±0.6 g/L。而改变PDHC酶活水平不利于L-亮氨酸的合成。此外,以启动子P_(dapA-R2)控制CS表达,而以启动子P_(gapA)控制PDHC表达时(即重组菌XL-4),可实现胞内丙酮酸和乙酰-CoA的有效供给,L-亮氨酸产量达到20.2±1.7 g/L,且显著降低副产物产量。若在重组菌XL-4中引入C.tepidum,ACL会显著抑制菌体生长而不利于L-亮氨酸合成,而引入到出发菌XL-3中因胞内丙酮酸和乙酰-CoA得到有效供给,目标重组菌XL-5L-亮氨酸产量达到18.5±1.2 g/L,比出发菌株XL-3增加了14.2%。【结论】重组菌XL-4中因协同控制CS和PDHC酶活,从而实现胞内丙酮酸和乙酰-CoA有效供给,促进L-亮氨酸的合成。该研究结果对后续利用代谢工程技术强化微生物合成L-亮氨酸等支链氨基酸具有重要的参考价值。  相似文献   

15.
The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.  相似文献   

17.
The BChla-containing Fenna-Matthews-Olson (FMO) protein from the green sulfur bacteriumChlorobium tepidum was purified and characterized. Fluorescence spectra indicate that efficient excited state quenching occurs at neutral or oxidizing redox potentials. The major fluorescence lifetime at room temperature is approximately 60 ps in samples that are in neutral or oxidizing conditions, and approximately 2 ns in samples where the strong reductant sodium dithionite has been added. A similar change is observed in pump-probe picosecond absorbance difference experiments, where the long life time component increases after dithionite addition. A 16 Gauss wide EPR signal with g factor =2.005 is observed in samples without dithionite. This signal largely disappears upon addition of dithionite. Dithionite induces large reversibile changes in the 77 K absorbance spectra of the purified FMO protein and in whole cells. These results indicate that the FMO protein contains redox active groups, which may be involved in the regulation of energy transfer. Room temperature circular dichroism and low temperature absorption spectra show that dithionite also induces conformational or structural changes of the FMO protein complex.  相似文献   

18.
The csmB gene, encoding the 7.5-kDa “Gerola-Olson” protein of chlorosomes, has been cloned and sequenced from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Two potential start codons were identified, and the csmB gene may be translated into a preprotein with an amino-terminal extension. Two forms of the mature CsmB protein (74 or 75 amino acids in length) were identified that differ by the presence or absence of a methionine residue at the amino terminus. The csmB gene of Chl. tepidum is transcribed as an abundant monocistronic mRNA of approximately 350 nucleotides; primer extension mapping of the 5′ endpoint of the csmB mRNA suggests there is strong similarity between the csmB promoter and the σ70 promoters of Escherichia coli. The CsmB protein of Chl. tepidum was overproduced as a histidine-tagged fusion protein in E. coli, purified to homogeneity by Ni2+ chelation affinity chromatography, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments with isolated chlorosomes using anti-CsmB antibodies indicate that the CsmB protein is a component of the chlorosome envelope. Received: 28 May 1996 / Accepted: 17 July 1996  相似文献   

19.
Bacteriochlorophyll (BChl) c in whole cells of Chlorobium tepidum grown at 46 °C changed into bacteriopheophytin (BPhe) c within 10 days after reaching full growth. When a small amount of C. tepidum cells in which BChl c had been completely pheophytinized were transferred to a new culture medium, normal growth was observed after a short lag phase, and the absorption spectrum of the growing cells showed the presence of a normal amount of BChl c. During the growth of C. tepidum in the new culture, the BChl c concentration was nearly proportional to the cell density measured by turbidity (OD640). These results indicate that C. tepidum can survive even when BChl c has been completely pheophytinized and that BChl c is newly synthesized in such cells when transferred to a new culture medium. In partly pheophytinized cells, upon excitation of BPhe c at 550 nm the fluorescence emission spectrum showed maxima at 775 and 810 nm, which correspond to emissions from BChl c and BChl a, respectively. This indicates energy transfer from BPhe c to BChl c and BChl a. In cells in which BChl c was completely pheophytinized, fluorescence measurements were indicative of direct energy transfer from BPhe c to baseplate BChl a. These findings suggest that when BChl c in C. tepidum cells is pheophytinized, the product (BPhe c) remains in the chlorosomes and continues to work as a light-harvesting pigment. Received: 2 October 1998 / Accepted: 22 April 1999  相似文献   

20.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号