首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

2.
The ability to predict the effects of climate change on trace gas fluxes requires a knowledge of microbial temperature responses. However, the response of a microbial community to temperature in a given substrate may be complicated by its thermal history. To examine the effect of sequentially changing temperature on methane and carbon dioxide production in different peat types, we incubated anaerobic peat samples from 3 types of northern peatlands, a bog, a sedge fen and a cedar swamp, in both rising and falling temperature regimes. Graphic and statistical comparisons of the different temperature regimes suggest hysteresis in microbial response to temperature, although the absolute rates at any given temperature often did not differ. Where regressions for temperature response (Arrhenius plots) were significant, they generally differed between temperature regimes. The greatest differences among treatments occurred during the first half of the 40-d incubation. Increases in carbon dioxide production were similar across all peat types, but methanogenesis varied widely: methane production was uniformly low in the bog peat but increased sharply with temperature in the other two peat types. The complicating effect of history or chronology on substrate responses to environmental stimuli may restrain our ability to model the responses of complex systems to changing conditions.  相似文献   

3.
Methane production and sulfate reduction in two Appalachian peatlands   总被引:2,自引:7,他引:2  
Anaerobic carbon mineralization was evaluated over a 1-year period in two Sphagnum-dominated peatlands, Big Run Bog, West Virginia, and Buckle's Bog, Maryland. In the top 35 cm of peat, mean rates of methane production, anaerobic carbon dioxide production, and sulfate reduction at Big Run Bog were 63,406 and 146 mol L-1 d-1, respectively, and at Buckle's Bog were 18, 486 and 104 mol L-1 d-1. Annual anaerobic carbon mineralization to methane and carbon dioxide at Big Run Bog and Buckle's Bog was 52.8 and 57.2 mol m-2, respectively. Rates of methane production were similar to rates reported for other freshwater peatlands, but methane production accounted for only 11.7 and 2.8%, respectively, of the total anaerobic carbon mineralization at these two sites. Carbon dioxide production, resulting substantially from sulfate reduction, dominated anaerobic carbon mineralization. Considerable sulfate reduction despite low instantaneous dissolved sulfate concentrations (typically < 300 mol L-1 of substrate) was apparently fueled by oxidation and rapid turnover of the reduced inorganic sulfur pool.The coincidence of high sulfate inputs to the Big Run Bog and Buckle's Bog watersheds through acid precipitation with the unexpected importance of sulfate reduction leads us to suggest a new hypothesis: peatlands not receiving high sulfate loading should exhibit low rates of anaerobic decomposition, and a predominance of methane production over sulfate reduction; however, if such peatlands become subjected to high rates of sulfur deposition, sulfate reduction may be enhanced as an anaerobic mineralization pathway with attendant effects on carbon balance and peat accumulation.  相似文献   

4.
Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralization and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 and 4.5 m deep) along four chronosequences, from elevated permafrost peat plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic laboratory incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 ± 7.2 kg C m−2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 ± 2.5 kg C m−2. We estimate ~19% (±5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 ± 7.9 kg C m−2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralization of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.  相似文献   

5.
The area of wet grasslands on peat soil in the Netherlands is slowly increasing at the expense of drained, agriculturally used grasslands. This study aimed (i) to assess the contribution of wet grasslands on peat soil to methane (CH4) emissions, and (ii) to explain differences among sites and between years in order to improve our understanding of controlling factors. For these purposes, a field study was conducted in the period 1994–1996 in the nature preserve Nieuwkoopse Plassen, which is a former peat mining and agricultural area. Net CH4 emissions were measured weekly to monthly with vented closed flux chambers at three representative sites, and at ditches near these sites. Three-years average of CH4 emissions was 7.9 g CH4 m–2 yr–1 for Drie Berken Zudde, 13.3 for Koole, and 20.4 for Brampjesgat. Ditches near the sites emitted 4.2–22.5 g CH4 m–2 yr–1. The time-course of CH4 emissions for all experimental sites and years was fit with a multiple linear regression model with ground water level and soil temperature as independent variables. Lowering or raising the ground water level by 5 cm could decrease or increase CH4 emissions by 30–50%. Therefore, ground water level management of these grasslands should be done with care.  相似文献   

6.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

7.
Recent anthropogenic emissions of key atmospheric trace gases (e.g. CO2 and CH4) which absorb infra-red radiation may lead to an increase in mean surface temperatures and potential changes in climate. Although sources of each gas have been evaluated independently, little attention has focused on potential interactions between gases which could influence emission rates. In the current experiment, the effect of enhanced CO2 (300 μL L–1 above ambient) and/or air temperature (4 °C above ambient) on methane generation and emission were determined for the irrigated tropical paddy rice system over 3 consecutive field seasons (1995 wet and dry seasons 1996 dry season). For all three seasons, elevated CO2 concentration resulted in a significant increase in dissolved soil methane relative to the ambient control. Consistent with the observed increases in soil methane, measurements of methane flux per unit surface area during the 1995 wet and 1996 dry seasons also showed a significant increase at elevated carbon dioxide concentration relative to the ambient CO2 condition (+49 and 60% for each season, respectively). Growth of rice at both increasing CO2 concentration and air temperature did not result in additional stimulation of either dissolved or emitted methane compared to growth at elevated CO2 alone. The observed increase in methane emissions were associated with a large, consistent, CO2-induced stimulation of root growth. Results from this experiment suggest that as atmospheric CO2 concentration increases, methane emissions from tropical paddy rice could increase above current projections.  相似文献   

8.
Direct mass spectrometric measurement of gases in peat cores   总被引:1,自引:0,他引:1  
Abstract Dissolved gas concentrations (O2, CH4, CO2) in peat cores were monitored simultaneously using a fine (1.56 mm diameter) membrane inlet probe connected to a quadrupole mass spectrometer. This technique allows direct measurements at specific locations within the sample with minimal disturbance. Detailed gas profiles in completely waterlogged peat samples (hollows) and samples in which the water table was several cm below the vegetation surface (hummocks) were compared. The depth of the water table played a central role in the distribution of gases. In a hollow, oxygen was present (90 μM) at the surface but was not detectable (<0.5 μM) at depths greater than 2 cm. Concentrations of CH4 and CO2 increased from 6 and 300 μM respectively at the surface to maxima of 450 and 3900 μM at 13 cm depth. At a hummock, O2 and CO2 were present above the water table but CH4 was not detectable. CH4 was measurable 2 cm below the water table. Both CH4 and CO2 concentrations increased with depth but maxima were not attained in the sampled cores.  相似文献   

9.
Rates of organic matter mineralization in peatlands, and hence production of the greenhouse gases CH4 and CO2, are highly dependent on the distribution of oxygen in the peat. Using laboratory incubations of peat, we investigated the sensitivity of the anoxic production of CH4 and CO2 to a transient oxic period of a few weeks’ duration. Production rates during 3 successive anoxic periods were compared with rates in samples incubated in the presence of oxygen during the second period. In surface peat (5–10‐cm depth), with an initially high level of CH4 production, oxic conditions during period 2 did not result in a lower potential CH4 production rate during period 3, although production was delayed ~1 week. In permanently anoxic, deep peat (50–55‐cm depth) with a comparatively low initial production of CH4, oxic conditions during period 2 resulted in zero production of CH4 during period 3. Thus, the methanogens in surface peal—but not in deep peat—remained viable after several weeks of oxic conditions. In contrast to CH4 production, the oxic period had a negligible effect on anoxic CO2 production during period 3, in surface as well as deep peat. In both surface and deep peat, CO2 production was several times higher under oxic than under anoxic conditions. However, for the first 2 weeks of oxic conditions, CO2 production in the deep peat was very low. Still, deep peat obviously contained facultative microorganisms that, after a relatively short period, were able to maintain a considerably higher rate of organic matter mineralization under oxic than under anoxic conditions.  相似文献   

10.
Understanding the dynamics of methane (CH4) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr?1, which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up‐to‐date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial‐scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process‐based biogeochemistry models.  相似文献   

11.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

12.
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42?) dynamics under drought conditions has been revealed from analysis of a 10‐year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House‐Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4‐weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>?25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42?, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought‐induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42? during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought‐induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.  相似文献   

13.
14.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

15.
We report here three years of field observations of methane uptake, averaging 1.2 mg CH4 m–2 d–1 in montane meadow soils. Surface soil moisture influenced diffusion of substrate while in deeper soil, where methane oxidation was maximum, moisture influenced both diffusion and microbial activity. Microbial oxidation of methane was maximum at an intermediate level of soil moisture, at this site at about 25% moisture by weight (50% water holding capacity). Laboratory incubations also showed inhibition below 20% moisture. These results provide in situ characterization of moisture limitation of methanotroph activity and evidence that soil drying may diminish the methane sink strength. The microbial limitation to methane consumption at low soil moisture provides a mechanism for positive feedback between methane flux and climate warming, as suggested by ice core data (Blunier et al. 1993; Chappellaz et al. 1990; Stauffer et al. 1985).  相似文献   

16.
The potential impact of an increase in methane emissions from natural wetlands on climate change models could be very large. We report a profound increase in methane emissions from cores of mire peat and vegetation as a direct result of increasing the CO2 concentration from 355 to 550 μol mol?1 (a 60% increase). Increased CH4 fluxes were observed throughout the four month period of study. Seasonal variation in CH4 flux, consistent with that seen in the field, was observed under both ambient and elevated CO2. Under ambient CO2, methane fluxes rose from 0.02 μol m-2 s?1 in May to 0.11 μol m?2 s?3 in July before declining again in August. Under elevated CO2 methane fluxes were at least 100% greater throughout the experiment, rising from 0.05 μol m-2 s?1 in May to a peak of 0.27 μol m?2 s?1 in July. The stimulation of CO4 emissions was accompanied by a 100% increase in rates of photosynthesis from 4.6 (± 0.3) under ambient CO2 to 9.3 (± 0.7) μol m?2 s?1. Root and shoot biomass were unaffected.  相似文献   

17.
Eddy covariance measurements of methane flux were carried out in an arctic tundra landscape in the central Lena River Delta at 72°N. The measurements covered the seasonal course of mid‐summer to early winter in 2003 and early spring to mid‐summer in 2004, including the periods of spring thaw and autumnal freeze back. The study site is characterized by very cold and deep permafrost and a continental climate with a mean annual air temperature of ?14.7 °C. The surface is characterized by wet polygonal tundra, with a micro‐relief consisting of raised moderately dry sites, depressed wet sites, polygonal ponds, and lakes. We found relatively low fluxes of typically 30 mg CH4 m?2 day?1 during mid‐summer and identified soil temperature and near‐surface atmospheric turbulence as the factors controlling methane emission. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. The soil thaw depth and water table position were found to have no clear effect on methane fluxes. The excess emission during spring thaw was estimated to be about 3% of the total flux measured during June–October. Winter emissions were modeled based on the functional relationships found in the measured data. The annual methane emission was estimated to be 3.15 g m?2. This is low compared with values reported for similar ecosystems. Reason for this were thought to be the very low permafrost temperature in the study region, the sandy soil texture and low bio‐availability of nutrients in the soils, and the high surface coverage of moist to dry micro‐sites. The methane emission accounted for about 14% of the annual ecosystem carbon balance. Considering the global warming potential of methane, the methane emission turned the tundra into an effective greenhouse gas source.  相似文献   

18.
A design is presented to continuously monitor the transfers of carbon between the atmosphere and the terrestrial biosphere and oceans on large spatial scales. A consideration of the expected signal-to-noise suggests that a very cost effective method is to perform repeated measurements of the mixing ratios of trace gases in the atmospheric column at an increased number of sites compared to the present geographical coverage. This can be accomplished with existing technology, provided that more automation is applied to the sampling process as well as to the analytical procedures. The resulting data will be crucial to test extrapolations based on direct flux measurements to regional and global scales.  相似文献   

19.
Zicheng Yu 《Ecosystems》2006,9(8):1278-1288
Understanding the long-term ecological dynamics of northern peatlands is essential for assessment of the possible responses and feedbacks of these carbon-rich ecosystems to climate change and natural disturbance. I used high-resolution macrofossil and lithological analyses of a fen peatland in western Canada to infer the Holocene developmental history of the peatland, to document the temporal pattern of long-term peat accumulation, and to investigate ecosystems responses to climate changes in terms of species composition and carbon accumulation. The peatland has been dominated by sedges and brown mosses during its 10,000-year history, despite interruption by tephra deposition. Peat accumulation rates vary by more than an order of magnitude and decline from 5500 to 1300 cal BP, resulting in a convex depth–age curve, which contrasts with the carbon accumulation patterns documented for oceanic peatlands. The synthesis of regional data from continental western Canada indicates that fens tend to accumulate more carbon than bogs of the same ages. These data suggest that the carbon sink potential of northern peatlands has varied dramatically in the past, so estimates of the present and projected carbon sink strengths of these peatlands need to take this temporal variation into consideration. Widespread slowdown of peat accumulation over the last 4000 years may have resulted from climate cooling in northern latitudes after the Holocene insolation maximum. The findings indicate that long-term peatland dynamics are modified by many local and regional factors and that gradual environmental change may be capable of triggering abrupt shifts and jumps in ecosystem states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号