首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anoxic wetlands are an important source for the greenhouse gas CH4, much of which is emitted in form of gas bubbles. The conditions for formation of gas bubbles have recently been described by an analytical model, which allows the prediction of fluxes by first physical principles using the knowledge of gas concentration profiles and/or gas production rates. We tested parts of this model by experiments using microcosms of flooded, non-vegetated and homogeneous rice field soil incubated under different gas atmospheres and at different temperatures. In these experiments we determined rates of CH4 and CO2 production, upper boundaries of the bubble zone, gas-filled porosities and vertical profiles of dissolved CH4, CO2 and N2. The results of our experiments confirmed that by knowing only one of the following parameters, i.e. CH4 production, diffusive CH4 flux and depth of upper boundary of bubble zone, the remainder could be predicted from the model. On average, predicted values differed from experimental ones by a factor of 0.4 –2.7, depending on which parameter was taken as an input for the model. It was possible to predict the percentage of gas bubble flux from measured CH4 emission rates under the experimental conditions, which was on the order of 90%. The confrontation of the model with experimental data showed that the effect of the shallow upper oxic layer on bubble formation was negligible and that the CH4 diffusive flux is easily underestimated by experiments lacking sufficient spatial resolution. Therefore, CH4 production rates lower than in our microcosms would allow a more precise test of the model by creating less steep concentration gradients, which, however, would require long incubation times to purge the dissolved N2 from the soil by ebullition and to reach true steady state.  相似文献   

2.
Spatial and temporal variations in the concentrations of dissolved gases (CH4, CO2, and O2) in peat cores were studied using membrane inlet mass spectrometry (MIMS). Variations in vertical gas profiles were observed between random peat cores taken from hollows on the same peat bog. Methane concentrations in profiles (0–30 cm) generally increased with depth and reached maximum values in the range of 200–450 m CH4 below about 13-cm depth. In some profiles, a peak of dissolved methane was observed at 7-cm depth. Oxygen penetrated to approximately 2-cm depth in the hollows. The sampling probe was used to continuously monitor CH4, CO2, and O2 concentrations at fixed depths in peat cores over periods of several days. The concentration of dissolved CO2 and O2 at 1-cm depth oscillated over a 24-h period with the maximum of CO2 concentration corresponding with the minimum of 02. Diurnal variations in CO2 but not CH4 were measured at 15-cm depth; dissolved CO2 levels decreased during daylight hours to a constant minimum concentration of 4.85 mm. This report also describes the application of MIMS for the measurement of gaseous diffusion rates in peat using an inert gas (argon); the value of D, the diffusion coefficient, was 2.07 × 10–8 m2 s–1. Correspondence to: D. Lloyd  相似文献   

3.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

4.
Canopy soils can significantly contribute to aboveground labile biomass, especially in tropical montane forests. Whether they also contribute to the exchange of greenhouse gases is unknown. To examine the importance of canopy soils to tropical forest‐soil greenhouse gas exchange, we quantified gas fluxes from canopy soil cores along an elevation gradient with 4 yr of nutrient addition to the forest floor. Canopy soil contributed 5–12 percent of combined (canopy + forest floor) soil CO2 emissions but CH4 and N2O fluxes were low. At 2000 m, phosphorus decreased CO2 emissions (>40%) and nitrogen slightly increased CH4 uptake and N2O emissions. Our results show that canopy soils may contribute significantly to combined soil greenhouse gas fluxes in montane regions with high accumulations of canopy soil. We also show that changes in fluxes could occur with chronic nutrient deposition.  相似文献   

5.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

6.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

7.
Membrane inlet mass spectrometry was used to monitor dissolved gas concentrations (CO2, CH4 and O2) in a mesotrophic peat core from Kopparås, Sweden. 1 A comparison of depth profiles (down to 22 cm) with an ombrotrophic peat core (Ellergower, SW Scotland) investigated previously, revealed major differences in gas concentrations. Thus methane reached concentrations more than twice as high (800 μM) at depths greater than 12 cm in the Kopparås core. As shown previously, the primary determinant of the depth of the oxic zone is the level of the water table. Whereas in the Scottish cores, mass spectrometric detectability of O2 was confined to the first 3 cm below this level, in the Swedish core penetration of O2 was greater (7 cm). CO2 profiles were similar in cores from both locations. 2 A thick layer of Sphagnum mosses dominated the plant cover of the Swedish peat core. A poorly developed deep root system, as distinct from that of the vascular plant cover in Scottish cores, diminished gas exchange rates, and presumably aerobic methane oxidation at depth around roots. These characteristics may contribute to the development of discontinuities in gas profiles at depths greater 15 cm as upward gas transport is established predominantly by diffusion and/or ebullition in the Swedish core. 3 Monitoring gas concentrations at the peat surface and at 2 cm depth after changing water tables showed a delayed response of approximately 4 days as a result of the high water content and moisture‐regulating capacity of mosses. 4 Recovery processes at 2 cm depth after raising the water table revealed final production rates of dissolved CO2 and CH4 in the peat pore water between 0.8 and 4.4 μmol h?1 L?1 and between 0.1 and 1.7 μmol h?1 L?1, respectively. Higher production rates were found during the day, indicating a diurnal rhythm due to plant photosynthetic activity even at the low values of photosynthetically active radiation (PAR: 110 μmol s?1 m?2) used in the experimental set‐up. 5 In the water‐logged mesotrophic Kopparås core changes of dissolved gas concentrations (DGC) at 3 and 14 cm depth were surface temperature‐dependent rather than light dependent. This suggests that changes of air temperature alters the covering vegetation to increase the conductivity for dissolved gases through vascular plants and to facilitate gas transport by diffusion and/or ebullition.  相似文献   

8.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   

9.
Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m?2 yr?1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha?1 yr?1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.  相似文献   

10.
Wetlands are the largest source of methane (CH4) globally, yet our understanding of how process‐level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2) and CH4 fluxes by eddy covariance from two wetlands recently restored on peat and alluvium soils within the Sacramento–San Joaquin Delta of California. Annual CH4 fluxes from the alluvium wetland were significantly lower than the peat site for multiple years following restoration, but these differences were not explained by variation in dominant climate drivers or productivity across wetlands. Soil iron (Fe) concentrations were significantly higher in alluvium soils, and alluvium CH4 fluxes were decoupled from plant processes compared with the peat site, as expected when Fe reduction inhibits CH4 production in the rhizosphere. Soil carbon content and CO2 uptake rates did not vary across wetlands and, thus, could also be ruled out as drivers of initial CH4 flux differences. Differences in wetland CH4 fluxes across soil types were transient; alluvium wetland fluxes were similar to peat wetland fluxes 3 years after restoration. Changing alluvium CH4 emissions with time could not be explained by an empirical model based on dominant CH4 flux biophysical drivers, suggesting that other factors, not measured by our eddy covariance towers, were responsible for these changes. Recently accreted alluvium soils were less acidic and contained more reduced Fe compared with the pre‐restoration parent soils, suggesting that CH4 emissions increased as conditions became more favorable to methanogenesis within wetland sediments. This study suggests that alluvium soil properties, likely Fe content, are capable of inhibiting ecosystem‐scale wetland CH4 flux, but these effects appear to be transient without continued input of alluvium to wetland sediments.  相似文献   

11.
  1. Changes in climate are causing floods to occur more often and more intensely in many parts of the world, including agricultural landscapes of southern Wisconsin (U.S.A.). How flooding and greater flood frequency affect stream carbon dioxide (CO2) and methane (CH4) fluxes and concentrations is not obvious. Thus, we asked how diffusive fluxes of CO2 and CH4 varied over time, particularly in response to floods, in agricultural streams, and what were likely causes for observed flood responses.
  2. We measured concentrations and diffusive fluxes of CO2 and CH4 at 10 stream sites in mixed agricultural and suburban catchments in southern Wisconsin (U.S.A.) during the growing season (March–November) in a year that experienced multiple floods. Habitat, hydrologic, and water chemistry attributes were also quantified to determine likely drivers of changes in gas concentrations and fluxes.
  3. Habitat and water chemistry, as well as CO2 and CH4 concentrations and fluxes were temporally erratic and lacked any seasonality. Carbon dioxide and CH4 concentrations and fluxes were higher during floods along with increased water velocity, turbidity, and dissolved organic carbon and decreases in dissolved oxygen, soft sediment depth, and macrophyte cover.
  4. Increased gas concentrations and fluxes were probably due to flushing of gases from soils, respiration of organic matter in the channel, and increased gas exchange velocities during floods.
  5. Flooding alleviated both supply and transfer limits on CO2 and CH4 emissions in these agricultural streams, and frequent and prolonged flooding during the growing season led to sustained high emissions from these streams. We hypothesise that such persistent increases in emissions during floods may be a common response to high precipitation periods for many agricultural streams.
  相似文献   

12.
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires.  相似文献   

13.
The importance of floating peat to methane fluxes from flooded peatlands   总被引:3,自引:1,他引:2  
The effect of flooding on methane (CH4) fluxes was studied through the construction of an experimental reservoir in a boreal forest wetland at the Experimental Lakes Area in northwestern Ontario. Prior to flooding, the peatland surface was a small source of CH4 to the atmosphere (1.0± SD of 2.3 mg CH4 m–2 d–1). After flooding, CH4 fluxes from the submerged peat surface increased to 64±68 mg CH4 m–2 d–1 CH4 bubbles within the submerged peat caused about 1/3 of the peat to float. Fluxes from these floating peat islands were much higher (440±350 mg CH4 m–2 d–2) than from both the pre-flood (undisturbed) and the post-flood (submerged) peat surfaces.The high fluxes of CH4 from the floating peat surfaces may be explained by a number of factors known to affect the production and consumption of CH4 in peat. In floating peat, however, these factors are particularly enhanced and include decreased oxidation of CH4 due to the loss of aerobic habitat normally found above the water table of undisturbed peat and to increased peat temperatures. The extremely high fluxes associated with newly lifted peat may decrease as the islands age. However, CH4 flux rates from floating peat islands that were several years old still far exceeded those from undisturbed peat surfaces and from the water surface of a newly created reservoir.  相似文献   

14.

Background & Aim

Vascular plants may reduce episodic ebullition losses of methane (CH4) from peatlands. They transport CH4 to the atmosphere, which may lead to a reduction in pore-water [CH4], bubble formation and release. This effect may be compounded by rhizospheric oxidation and associated methanotrophy. However, any reduction in pore-water [CH4] may be countered by root exudation (substrate for methanogens). The aim of this study was to determine how the presence of sedges affects CH4 emissions from peatlands.

Methods

Five pairs of peat cores were collected from a raised bog. One of each pair contained Sphagnum cuspidatum and Eriophorum angustifolium (‘sedge’ cores); the other was dominated by S. cuspidatum (‘no-sedge’). From these the total CH4 efflux—including that due to episodic ebullition—were measured. A partial-shading treatment helped isolate the potential effect of root exudation.

Results

Sedge samples had significantly higher CH4 fluxes than no-sedge samples, but episodic-ebullition fluxes were not significantly different. Between full-light and partially-shaded conditions, there was a significant increase in the difference in CH4 fluxes between the sedge and no-sedge cores.

Conclusion

The higher rates of CH4 flux from the sedge cores cannot be explained simply by higher rates of CH4 production due to rapid utilisation of exudates.  相似文献   

15.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

16.
Anaerobic respiration and methanogenesis have been found to slow-down in water saturated peat soils with accumulation of metabolic end-products, i.e. dissolved inorganic carbon (DIC) and methane (CH4), due to a lack of solute and gas transport. So far it is not well understood how solute and gas transport may control this effect. We conducted a column experiment with homogenized ombrotrophic peat over a period of 300 days at 20 °C. We specifically evaluated the effects of diffusive flux as control, downward advective water flux, intensified ebullition by conduit gas transport and diffusive oxygen supply on controlling anaerobic decomposition rates and carbon (C) turnover. To simulate advective flux, water and solutes were recirculated downward through the column after stripping of dissolved gases. We analyzed DIC and CH4 concentrations, production rates and fluxes, gas filled porosity, oxygen profiles (O2) and microbial C biomass over time. DIC residence time thereby served as proxy to characterize transport. A slowdown of anaerobic respiration and methanogenesis evolved with the accumulation of the end-products DIC and CH4 and set in after 150 days. This slow-down was accompanied by a decrease in the distribution of microbial biomass C with depths. Anaerobic DIC and CH4 production rates were fastest close to the water table and sharply slowed with depth. Accumulation of DIC and CH4 in the homogeneous peat material throughout the column decreased decomposition constants from about 10?5 near the surface to 10?9 year?1 deeper in the profile. Advective water transport extended the zone of active methanogenesis compared to a diffusive system; experimental enhancement of ebullition had little or no effect as well as strictly anoxic conditions. DIC residence time was negatively correlated to anaerobic respiration suggesting this parameter to be a predictor of anaerobic peat decomposition in peatlands. Overall, this study suggests that burial of peat and accumulation of metabolic end-products effectively slows decomposition and that this effect needs to be considered to explain peat accumulation and the response of peat mineralization rates to changes in environmental conditions.  相似文献   

17.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

18.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

19.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

20.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号