首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracking adult stem cells   总被引:1,自引:0,他引:1  
The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.  相似文献   

2.
Animals and plants maintain small pools of stem cells that continuously provide the precursors of more-specialized cells to sustain growth or to replace tissues. A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both types of organism, stem cells are maintained by intercellular signals that are available only in defined regions (niches) in the tissues. Although plants use different signals and are more flexible at establishing stem-cell niches in new locations, recent evidence suggests that the mechanisms restricting cell fate in stem-cell progeny are similar in both kingdoms and might pre-date the evolution of multicellular organisms.  相似文献   

3.
Recent progress in biology has shown that many if not all adult tissues contain a population of stem cells. It is believed that these cells are involved in the regeneration of the tissue or organ in which they reside as a response to the natural turnover of differentiated cells or to injury. In the adult mammalian brain, stem cells in the subventricular zone and the dentate gyrus may also play a role in the replacement of neurons. A positive beneficial response to injury does not necessarily require cell replacement. New findings suggest that some populations of endogenous neural stem cells in the central nervous system may have adopted a function different from cell replacement and are involved in the protection of neurons in diverse paradigms of disease and injury. In this article, we will focus on the immature cell populations of the central nervous system and the signal transduction pathways that regulate them which suggest new possibilities for their manipulation in injury and disease.  相似文献   

4.
Stem cells have the capacity both to self-renew and to give rise to differentiated progeny, and are vital to the organization of multicellular organisms. Stem cells raise a number of fundamental questions regarding lineage restriction and cellular differentiation, and they hold enormous promise for cell-based therapies. Here I propose a theoretical framework for stem cell biology based on the concepts of autopoiesis (self-production) and complementarity. I argue that stem cells are pivotal in the self-production of the organism and that we need complementary approaches to understand their probabilistic behavior. I discuss how this framework generates testable hypotheses regarding stem-cell functions.  相似文献   

5.
Isolation and characterization of functional mammary gland stem cells   总被引:12,自引:0,他引:12  
Abstract.  Significant advances in the stem-cell biology of several tissues, including the mammary gland, have occurred over the past several years. Recent progress on stem-cell fate determination, molecular markers, signalling pathways and niche interactions in haematopoietic, neuronal and muscle tissue may provide parallel insight into the biology of mammary epithelial stem cells. Taking advantage of approaches similar to those employed to isolate and characterize haematopoietic and epidermal stem cells, we have identified a mammary epithelial cell population with several stem/progenitor cell qualities. In this article, we review some recent data on mammary epithelial stem/progenitor cells in genetically engineered mouse models. We also discuss several potential molecular markers, including stem-cell antigen-1 (Sca-1), which may be useful for both the isolation of functional mammary epithelial stem/progenitor cells and the analysis of tumour aetiology and phenotype in genetically engineered mouse models. In different transgenic mammary tumour models, Sca-1 expression levels, as well as several other putative markers of progenitors including keratin-6, possess dramatically altered expression profiles. These data suggest that the heterogeneity of mouse models of breast cancer may partially reflect the selection or expansion of different progenitors.  相似文献   

6.
Stem cell biology and neurodegenerative disease   总被引:5,自引:0,他引:5  
The fundamental basis of our work is that organs are generated by multipotent stem cells, whose properties we must understand to control tissue assembly or repair. Central nervous system (CNS) stem cells are now recognized as a well-defined population of precursors that differentiate into cells that are indisputably neurons and glial cells. Work from our group played an important role in defining stem cells of the CNS. Embryonic stem (ES) cells also differentiate to specific neuron and glial types through defined intermediates that are similar to the cellular precursors that normally occur in brain development. There is convincing evidence that the differentiated progeny of ES cells and CNS stem cells show expected functions of neurons and glia. Recent progress has been made on three fundamental developmental processes: (i) cell cycle control; (ii) the control of cell fate; and (iii) early steps in neural differentiation. In addition, our work on CNS stem cells has developed to a stage where there are clinical implications for Parkinson's and other degenerative disorders. These advances establish that stem cell biology contributes to our understanding of brain development and has great clinical promise.  相似文献   

7.
Crypt dynamics and colorectal cancer: advances in mathematical modelling   总被引:5,自引:0,他引:5  
Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.  相似文献   

8.
Central nervous system (CNS) stem cells have become the subject of many laboratories' efforts, presentations, and publications. Yet, in the stem cell world, CNS cells are viewed with skepticism. This is likely due to a dearth of biology (in vivo function) to accompany a flurry of phenomenological and restorative neurology studies. In this article, we compare and contrast the biological knowledge of adult forebrain epidermal growth factor-responsive neural stem cells that has emerged from our laboratories with that of hematopoietic stem cells, using two recent papers in the latter field as specific examples. A comparison of stem cell location, lineage, and repopulation suggests that our understanding of CNS stem cell biology is immature. We conclude that a greater focus on in vivo biology will enhance our knowledge and understanding of CNS stem cells. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 307–314, 1998  相似文献   

9.
Aboody K  Capela A  Niazi N  Stern JH  Temple S 《Neuron》2011,70(4):597-613
Since their discovery twenty years ago and prospective isolation a decade later, neural stem cells (NSCs), their progenitors, and differentiated cell derivatives along with other stem-cell based strategies have advanced steadily toward clinical trials, spurred by the immense need to find reparative therapeutics for central nervous system (CNS) diseases and injury. Current phase I/II trials using stem cells in the CNS are the vanguard for the widely anticipated next generation of regenerative therapies and as such are pioneering the stem cell therapy process. While translation has typically been the purview of industry, academic researchers are increasingly driven to bring their findings toward treatments and face challenges in knowledge gap and resource access that are accentuated by the unique financial, manufacturing, scientific, and regulatory aspects of cell therapy. Solutions are envisioned that both address the significant unmet medical need and lead to increased funding for basic and translational research.  相似文献   

10.
Compelling evidence exists that neural stem cell-based therapies protect the central nervous system (CNS) from chronic inflammatory degeneration, such as that occurring in experimental autoimmune encephalomyelitis and stroke. It was first assumed that stem cells directly replace lost cells but it is now becoming clearer that they might be able to protect the nervous system through mechanisms other than cell replacement. In immune-mediated experimental demyelination and stroke, transplanted neural stem/precursor cells (NPCs) are able to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple capacities that transplanted NPCs exhibit within specific microenvironments after transplantation. However, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here we will review some of the most recent evidence--and discuss some of the likely mechanisms--that support the remarkable capacity of NPCs to cross-talk with endogenous cells and to remodel the injured nervous system when applied as novel therapeutic regimes. We foresee that the exploitation of the innate mechanisms regulating these modalities of cell-to-cell communication has realistic chances of revolutionizing most of the actual understanding of stem cell biology and its application to regenerative medicine and CNS repair.  相似文献   

11.
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell. Funding: We wish to apologize to those whose work is not included due to the length constraints on the review. Work in the Lie lab is supported by the European Young Investigator Award Program of the European Science Foundation and grants of the Deutsche Forchungsgemeinschaft (LI 858/5-1), the European Union (Marie Curie Excellence Team Award and Marie Curie International Reintegration Grant), and the Bavarian Research Network “Adult Neural Stem Cells” FORNEUROCELL.  相似文献   

12.
Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering.  相似文献   

13.
Regeneration-based therapies for spinal cord injuries   总被引:2,自引:1,他引:1  
Although it has been long believed that the damaged central nervous system does not regenerate upon injury, there is an emerging hope for regeneration-based therapy of the damaged central nervous system (CNS) due to the progress of developmental biology and regenerative medicine including stem cell biology. In this review, we have summarized recent studies aimed at the development of regeneration-based therapeutic approaches for spinal cord injuries, including therapy with anti-inflammatory cytokines, transplantation of neural stem/precursor cells and induction of axonal regeneration.  相似文献   

14.
In the early 1960s I applied 3H-thymidine autoradiography to the study of the cells constituting the neural tube, and found that its wall was composed solely of one kind of single-layered epithelial cell, which perform an elevator movement between the mitotic and DNA-synthetic zones in the wall in accord with the cell cycle. They were identified as multipotent stem cells of the central nervous sytem (CNS) to which I gave the name of matrix cells. (3)H-thymidine autoradiography also revealed the chronology of development of these matrix cells: At first they proliferate only to expand the population (stage I), then switch to differentiate specific neuroblasts in given sequences (stage II), and finally change themselves into ependymoglioblasts, common progenitors of ependymal cells and neuroglia (stage III). Based on these findings, I proposed a monophyletic view of cytogenesis of the central nervous sytem. This matrix cell theory claiming the existence of multipotent stem cells has long been the target of severe criticism and not been accepted among neuro-embryologists for a long time. Recent findings by experimental and clinical neuroscientists on the importance of stem cells have renewed interest in the nature and biology of the multipotent neural stem cells. The present paper describes how the concept of the matrix cell (multipotent neural stem cells in vivo) emerged and what has come out from this view over the last 45 years, and how the basic concept of the matrix cell theory has recently been reconfirmed after a long period of controversy and neglect.  相似文献   

15.
Glial differentiation and the Gcm pathway   总被引:1,自引:0,他引:1  
One of the most challenging issues in developmental biology is to understand how cell diversity is generated. The Drosophila nervous system provides a model of choice for unraveling this process. First, many neural stem cells and lineages have been identified. Second, major molecular pathways involved in neural development and associated mutations have been characterized extensively in recent years. In this review, we focus on the cellular and molecular mechanisms underlying the generation of glia. This cell population relies on the expression of gcm fate determinant, which is necessary and sufficient to induce glial differentiation. We also discuss the recently identified role of gcm genes in Drosophila melanogaster and vertebrate neurogenesis. Finally, we will consider the Gcm pathway in the context of neural stem cell differentiation.  相似文献   

16.
Neurons, astrocytes, and oligodendrocytes, the three major cell types in the nervous system, are generated from common neural stem cells during development. Recent studies have provided evidence that neural stem cells are preserved in the adult brain, where, until recently, neurogenesis had not been considered to take place. The mechanisms that gOvern the fate of neural stem-cell determination have yet to be clarified. It is becoming apparent that soluble protein mediators referred to as cytokines play critical roles in cell-fate determination. For instance, bone morphogenetic proteins (BMPs) alter the fate of developing brain cells from a neurogenic differentiation to an astrocytic one. Different types of cytokines sometimes cooperate to modulate differentiation. For example, the interleukin-6 (IL-6) family cytokines and the BMP family cytokines act in synergy to elaborate astrocyte differentiation. In this review, we focus on recent progress that addresses the molecular mechanisms whereby cytokines regulate the fate of cells in neural lineages. We also discuss possible clinical applications of these findings to minimize the undesirable gliogenesis that occurs after neural stem-cell implantation and nerve injury.  相似文献   

17.
Stem cell biology is one of the most exciting, controversial, and debated fields in science today. It has been suggested that neuronal replacement therapy using stem cell transplants may be one possible answer to a host of neuropathological disorders including spinal cord injury, stroke, and neurodegenerative diseases. Important sources for stem cells include the developing embryo and adult central nervous system, but will these populations of cells exhibit similar behavior and responses to stimuli? This review will discuss some important similarities and differences between the embryonic and adult stem cell, as well as the basis for developing therapeutic approaches for stem cell replacement.  相似文献   

18.
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.  相似文献   

19.
The adult central nervous system (CNS) contains a population of neural stem cells, yet unlike many other tissues, has a very limited capacity for self-repair. Promoting tissue repair and functional recovery following CNS injury or disease is a high priority as there are currently no effective treatments towards this end for the treatment of disorders such as stroke, traumatic brain injury and spinal cord injury. Recent advances in stem cell biology have offered a number of enticing potential avenues and we will discuss these possibilities along with the associated challenges as they pertain to stroke. We will consider exogenous therapies involving the transplantation of adult stem cells, and the mobilization of endogenous stem cells, as well as drug delivery and tissue engineering strategies that enhance and complement the cell based strategies.  相似文献   

20.
Neural stem cells in aging and disease   总被引:9,自引:0,他引:9  
Aging in the central nervous system is associated with progressive loss of function which is exacerbated by neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The two primary cell replacement strategies involve transplantation of exogenous tissue, and activation of proliferation of endogenous cells. Transplanted tissue is used to either directly replace lost tissue, or to implant genetically engineered cells that secrete factors which promote survival and/or proliferation. However, successful application of any cell replacement therapy requires knowledge of the complex relationships between neural stem cells and the more restricted neural and glial progenitor cells. This review focuses on recent advances in the field of stem cell biology of the central nervous system, with an emphasis on cellular and molecular approaches to replacing cells lost in neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号