首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1.
1. The spectral properties of ‘oxygenated’ cytochrome c oxidase, prepared by passing air through the dithionite-reduced enzyme solution, were compared with those of the ferric enzyme.  相似文献   

2.
3.
A biphasic response is seen at both 445 and 605 nm as the ascorbate—cytochrome c—cytochrome aa3 system is taken slowly from the anaerobic to the aerobic state. At low oxygen tensions the 445 nm band is more reduced while at high oxygen tensions the 605 nm band is more reduced. It is suggested that the redox potential for cytochrome a (contributing 70% at 605–630 nm and 50% at 445–455 nm) is a function of the redox state of cytochrome a3. This model can account for both the aerobic/anaerobic data and for observations of interactions in the anaerobic system alone (Leigh, Jr, J.S., Wilson, D.F., Owen, C.S. and King, T.E. (1974) Arch. Biochem. Biophys. 160, 476–486).  相似文献   

4.
The low-spin ferric cyanide complex of beef heart cytochrome aa3 can be partially reduced by stoichiometric additions of ferrous cytochrome c or by similar additions of N,N,N′,N′-tetramethyl-p-phenylene diamine. In both cases the initial ratio of cytochrome c oxidized: cytochrome a reduced or Wurster's Blue: cytochrome a reduced approximates the value 2. It is concluded that the binding of a single HCN prevents the reduction of both cytochrome a3 and its associated EPR-invisible Cu atom.  相似文献   

5.
Summary The mitochondria of the cyt-2-1, cya-3-16, cya-4-23 and 299-1 nuclear mutants and the [mi-3] and [exn-5] cytoplasmic mutants of Neurospora crassa are deficient in cytochrome aa 3, while the cyb-1-1 and cyb-2-1 mutants have mitochondrial b-cytochrome dificiencies. However, the mitochondria from cyb-1-1 cyt-2-1, cyb-1-1 [mi-3] and cyb-2-1 [mi-3] double mutants contain 30% to 50% of the amount of cytochrome aa 3 that is present in mitochondria from wild-type; i.e. cyb-1-1 and cyb-2-2 act as suppressors of the cytochrome aa 3 deficiency phenotypes that are associated with the cyt-2-1 and [mi-3] mutations.The production of cytochrome aa 3 can be induced in cyt-2-1 and [mi-3] by growing cells in medium containing antimycin A, an inhibitor of electron transport in the cytochrome bc 1 segment of the mitochondrial electrontransport chain. Moreover, the growth of the [mi-3] mutant is strongly stimulated by low concentrations of antimycin A. The induction of cytochrome aa 3 by antimycin treatments does not occur in [exn-5], cya-4-23 and 299-1 cells, but does take place in cya-3-16 cells.Although some of the seven constituent polypeptides of cytochrome aa 3 are present the mitochondria of [mi-3], the holoenzyme complex is not formed in the mutant. In contrast, the mitochondria of cyb-1-1 [mi-3] and cyb-2-2 [mi-3] double mutants contain a fully assembled cytochrome oxidase complex as well as some unassembled subunit polypeptides.The observations are indicative of the existence of at least two regulatory systems controlling the production of cytochrome aa 3. One of the circuits appears to control the basal or constitutive production of cytochrome oxidase, the other seems to coordinate the level of cytochrome aa 3 with some function of the mitochondrial cytochrome bc 1 complex, possibly electron transport.  相似文献   

6.

1. 1. Cyanide inhibits the catalytic activity of cytochrome aa3 in both polarographic and spectrophotometric assay systems with an apparent velocity constant of 4·103 M−1·s−1 and a Ki that varies from 0.1 to 1.0 μM at 22 °C, pH 7·3.

2. 2. When cyanide is added to the ascorbate-cytochrome c-cytochromeaa3−O2 system a biphasic reduction of cytochrome c occurs corresponding to an initial Ki of 0.8 μM and a final Ki of about 0.1 μM for the cytochrome aa3−cyanide reaction.

3. 3. The inhibited species (a2+a33+HCN) is formed when a2+a33+ reacts with HCN, when a2+a32+HCN reacts with oxygen, or when a3+a33+HCN (cyano-cytochrome aa3) is reduced. Cyanide dissociates from a2+a33+HCN at a rate of 2·10−3 s−1 at 22 °C, pH 7.3.

4. 4. The results are interpreted in terms of a scheme in which one mole of cyanide binds more tightly and more rapidly to a2+a33+ than to a3+a33+.

Abbreviations: TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine  相似文献   


7.
8.
9.
Desulfovibrio vulgaris Hildenborough cytochrome c3 contains four hemes in a low-spin state with bis-histidinyl coordination. High-spin forms of cytochrome c3 can be generated by protonation of the axial ligands in order to probe spin equilibrium (low-spin/high-spin). The spin alterations occurring at acid pH, the associated changes in redox potentials, as well as the reactivity towards external ligands were followed by the conjunction of square wave voltammetry and UV–visible, CD, NMR and EPR spectroscopies. These processes may be used for modelling the action of enzymes that use spin equilibrium to promote enzyme activity and reactivity towards small molecules.  相似文献   

10.
Disc electrophoretically homogeneous spinach-chloroplast cytochrome b6 was found to be a lipoprotein whose redox potential was essentially unchanged during isolation. These results further support the hypothesis of Triton X-100/4 M urea, pH 8, as a useful extracting medium for membrane lipoproteins.

Cytochrome b6 was found to have a heme equivalent dry weight of 1 mol of heme per 60 000 g. Of this, 20 000 g was lipid-extractable. The molecular weight was 60 000 with a partial specific volume of 0.84 ml/g. The protein portion of the molecule (40 000) consisted of 1 polypeptide chain of 20 000 daltons, 1 of 9600 daltons and 2 of 6600 daltons. A simple lipid composition (relative to the original membrane) was found consisting of 7 mol of chlorophyll a and 6 mol of cardiolipin per mol of cytochrome; these two lipids thus account for about 75–80% of the lipid content. An unidentified minor neutral lipid and minor polar lipid were also detected. At pH 7.0 in the presence of 0.5% Triton X–100, E0 was −0.080 V, and in the absence of Triton X–100, E0 was −0.120 V. At pH 8 in 0.5% Triton X–100, E0 was −0.084 V, thus indicating that the redox potential is independent of pH in the region 7–8. The redox reaction proceeded via a one-electron-transfer.  相似文献   


11.
12.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

13.
Irradiation of beef-heart mitochondria and of cytochrome oxidase purified from beef-heart mitochondria with blue light inhibited electron transport from substrate (succinate for the mitochondria and reduced cytochrome c for the cytochrome oxidase) to O2. The irradiation treatment also destroyed cytochrome a3 as assayed by the absorption band for the reduced cyanide-cytochrome a3 complex at 587 nm in the low-temperature absorption spectrum. Irradiation under anaerobic conditions was not inhibitory. Cytochrome a3 was protected against photodestruction if cyanide was present during the irradiation.  相似文献   

14.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


15.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

16.
Purification of cytochrome b6 was pursued to further develop rational technology for purification, proof of purity, and study of properties of membrane proteins. Cytochrome b6 was purified—the first time from any source—from spinach chloroplast membranes; yield of pure cytochrome b6 was 30% of that found in ethanol-extracted particles. The three-step procedure (pH 8) employed: (I) extraction in Triton X-100-4 M (optionally 2 M) urea, (II) chromatography in a Bio-Gel A-1.5m Column (Triton X-100-4 M urea). Without this step, subsequent electrophoresis failed. (III) Preparative disc gel electrophoresis.

Properties of cytochrome b6: Cytochrome b6 migrated in undenatured form as a single band in disc electrophoresis (pH 8, 7 or 8.9). None of the limited, accepted properties of the cytochrome in particles was altered by the purification procedure: Reduced b6 has absorption maxima (22 °C) at 434, 536, and 563 nm; at −199 °C the a absorption region shows two peaks of equal intensity at 561 and 557 nm. Cytochrome b6 is reduced by dithionite (not by ascorbate) and is autoxidizable. The prosthetic group of b6 is protohaemin and is fully extractable by acid-acetone. No non-haem iron is present. The millimolar extinction coefficient of reduced b6 (563–600nm) per mole of haem is 21. The protein equivalent weight is 40000 g per mole of haem. Cytochrome b4 is an intrinsically aggregatable molecule. The reduced cytochrome does not react with CO except when Triton X-100 is present.  相似文献   


17.
Soluble cytochrome b5 of human erythrocytes was purified very effectively by hydrophobic chromatography using a butyl-Toyopearl 650 column. Cytochrome b5 was adsorbed tightly on the column in the presence of 60% saturated ammonium sulfate, and was eluted at 40% saturation of ammonium sulfate in the elution buffer. The chromatography gave a good yield of cytochrome b5 of the highest purity so far reported as estimated from the 414 nm to 280 nm absorbance ratio of the oxidized form of the cytochrome b5. The value obtained wit the cytochrome b5 purified in this study was 6.57, and is higher than the previously reported highest value of 6.4 (Hultquist, D.E., Dean, R.T. and Douglas, R.H. (1974) Biochem. Biophys. Res. Commun. 60, 28–34). Spectral properties including molecular absorption coefficients were determined using the cytochrome b5 purified by this method.  相似文献   

18.
Linda Yu  Jian-Hua Dong  Chang-An Yu 《BBA》1986,852(2-3):203-211
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150 000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30 000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 ± 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

19.
Gay Goodman  John S. Leigh  Jr. 《BBA》1987,890(3):360-367
The electron-spin relaxation rates of the two species of cytochrome a3+3-azide found in the azide compound of bovine-heart cytochrome oxidase were measured by progressive microwave saturation at T = 10 K. It has been shown previously that Cyt a+33-azide gives rise to two distinct EPR resonances, depending upon the oxidation state of Cyt a. When Cyt a is ferrous, Cyt a3+3-azide has g = 2.88, 2.19 and 1.64; upon oxidation of Cyt a, the a3+3-azide g-values become g = 2.77, 2.18, and 1.74 (Goodman, G. (1984) J. Biol. Chem. 259, 15094–15099). The relaxation effect of Cyt a on Cyt a3 could be measured as the difference in microwave field saturation parameter H1/2 between the g = 2.77 and g = 2.88 species. For each signal the spin-lattice relaxation time T1 was determined from H1/2 using the transverse relaxation time T2. The value of T2 at 10 K was extrapolated from a plot of line-width vs. temperature at higher temperature. The dipolar contribution to T1 was related to the Cyt a-Cyt a3 spin-spin distance utilizing available information on the relative orientation of Cyt a3-azide and Cyt a (Erecinska, M., Wilson, D.F. and Blasie, J.K. (1979) Biochim. Biophys. Acta 545, 352–364). By taking into account the relaxation parameters for both gx and gz components of the Cyt a3-azide g-tensor, the angle between the gz components of the Cyt a and Cyt a3g-tensors was determined to be between 0 and 18°, and the Cyt a-Cyt a3 spin-spin distance was found to be 19 ± 8 Å.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号