首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When enteropathogenic Escherichia coli (EPEC) attach and infect host cells, they induce a cytoskeletal rearrangement and the formation of cytoplasmic columns of actin filaments called pedestals. The attached EPEC and pedestals move over the surface of the host cell in an actin-dependent reaction [Sanger et al., 1996: Cell Motil Cytoskeleton 34:279-287]. The discovery that EPEC inserts the protein, translocated intimin receptor (Tir), into the membrane of host cells, where it binds the EPEC outer membrane protein, intimin [Kenny et al., 1997: Cell 91:511-520], suggests Tir serves two functions: tethering the bacteria to the host cell and providing a direct connection to the host's cytoskeleton. The sequence of Tir predicts a protein of 56.8 kD with three domains separated by two predicted trans-membrane spanning regions. A GST-fusion protein of the N-terminal 233 amino acids of Tir (Tir1) binds to alpha-actinin, talin, and vinculin from cell extracts. GST-Tir1 also coprecipitates purified forms of alpha-actinin, talin, and vinculin while GST alone does not bind these three focal adhesion proteins. Biotinylated probes of these three proteins also bound Tir1 cleaved from GST. Similar associations of alpha-actinin, talin, and vinculin were also detected with the C-terminus of Tir, i.e., Tir3, the last 217 amino acids. Antibody staining of EPEC-infected cultured cells reveals the presence of focal adhesion proteins beneath the attached bacteria. Our experiments support a model in which the cytoplasmic domains of Tir recruit a number of focal adhesion proteins that can bind actin filaments to form pedestals. Since pedestals also contain villin, tropomyosin and myosin II [Sanger et al., 1996: Cell Motil. Cytoskeleton 34:279-287], the pedestals appear to be a novel structure sharing properties of both focal adhesions and microvilli.  相似文献   

2.
The pathogenesis of enteropathogenic Escherichia coli (EPEC) is characterized by the type III secretion system-dependent exploitation of target cells that results in attaching and effacing (A/E) lesions, actin rearrangements and pedestal formation. This pathology is mediated by effector proteins which are translocated by the type III secretion system into the host cell such as the translocated intimin receptor (Tir) and several E. coli secreted proteins (Esp). Secretion of virulence proteins of EPEC is tightly regulated. In response to Ca(2+), Esp secretion is drastically reduced, whereas secretion of Tir is increased. Membrane insertion of Tir, secreted under low Ca(2+) conditions, is therefore independent of Esp. Furthermore, espB and espD mutant strains of EPEC, unable to form the translocation pore, still translocate Tir into host cells membranes. This autointegrated Tir is functional, as it is able to complement a tir mutant strain in recruiting actin to bacterial contact sites. The uptake of Tir into the host cell appears to depend on the C-terminal part of the protein, as deletion of this part of Tir prevents autointegration. Together, our results demonstrate that under conditions of limited Ca(2+) an alternative mechanism for Tir integration can trigger the induction of A/E lesions.  相似文献   

3.
Intimin is a bacterial adhesion molecule involved in intimate attachment of enteropathogenic and enterohaemorrhagic Escherichia coli to mammalian host cells. Intimin targets the translocated intimin receptor (Tir), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study we localized the Tir-binding region of intimin to the C-terminal 190 amino acids (Int190). We have also determined the region's high-resolution solution structure, which comprises an immunoglobulin domain that is intimately coupled to a novel C-type lectin domain. This fragment, which is necessary and sufficient for Tir interaction, defines a new super domain in intimin that exhibits striking structural similarity to the integrin-binding domain of the Yersinia invasin and C-type lectin families. The extracellular portion of intimin comprises an articulated rod of immunoglobulin domains extending from the bacterium surface, conveying a highly accessible 'adhesive tip' to the target cell. The interpretation of NMR-titration and mutagenesis data has enabled us to identify, for the first time, the binding site for Tir, which is located at the extremity of the Int190 moiety.  相似文献   

4.
Apoptosis, or programmed cell death, is a well-ordered process that allows damaged or diseased cells to be removed from an organism without severe inflammatory reactions. Multiple factors, including microbial infection, can induce programmed death and trigger reactions in both host and microbial cellular pathways. Whereas an ultimate outcome is host cell death, these apoptotic triggering mechanisms may also facilitate microbial spread and prolong infection. To gain a better understanding of the complex events of host cell response to microbial infection, we investigated the molecular role of the microorganism Enteropathogenic Escherichia coli (EPEC) in programmed cell death. We report that wild type strain of EPEC, E2348/69, induced apoptosis in cultured PtK2 and Caco-2 cells, and in contrast, infections by the intracellularly localized Listeria monocytogenes did not. Fractionation and concentration of EPEC-secreted proteins demonstrated that soluble protein factors expressed by the bacteria were capable of inducing the apoptotic events in the absence of organism attachment, suggesting adherence is not required to induce host cell death. Among the known EPEC proteins secreted via the Type III secretion (TTS) system, we identified the translocated intimin receptor (Tir) in the apoptosis-inducing protein sample. In addition, host cell ectopic expression of an EPEC GFP-Tir showed mitochondrial localization of the protein and produced apoptotic effects in transfected cells. Taken together, these results suggest a potential EPEC Tirmediated role in the apoptotic signaling cascade of infected host cells.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.  相似文献   

6.
7.
Enteropathogenic Escherichia coli (EPEC) is able to inject its own receptor, a transmembrane protein called translocated intimin receptor, Tir, into the host epithelial cell. The bacterium then uses an outer membrane protein, intimin, to bind to Tir and remains firmly attached to the host cell surface for the duration of the infection. The bacterium is also able to trigger the rearrangement of several host cell proteins, culminating with the formation of an actin-rich, pedestal-like structure beneath the EPEC adherence site. Although several cytoskeletal proteins are rearranged following EPEC infection, the exact role played by these proteins during pedestal formation remains unknown. We report here that talin, an integrin-binding protein, is recruited by EPEC and associates directly with Tir. By surface plasmon resonance (SPR), the predicted value for the dissociation constant ( K D) for Tir–talin binding was 1.86 × 10−7 M. We also demonstrate that microinjection of anti-talin antibodies into HeLa cells resulted in the complete inability to focus actin filaments beneath the attached bacterium. These findings demonstrate that talin is essential for EPEC-induced pedestal formation in infected cells.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to translocate into host cells several effector molecules that are required for virulence. One of these, the translocated intimin receptor, Tir, inserts into the host cell cytoplasmic membrane, where it functions as the receptor for intimin, an outer membrane adhesin expressed by EPEC. A chaperone for Tir, called CesT, is required for stability of Tir in the EPEC cytoplasm. In this study, the cyaA gene reporter system was used to identify domains in Tir that mediate secretion into the culture supernatant and translocation into host cells. A Tir-CyaA fusion containing the first 15 N-terminal residues of Tir was secreted and translocated into HeLa cells by a deltatirdeltacesT mutant; however, maximal secretion and translocation was observed with the first 26 N-terminal residues of Tir. Fusions containing progressively larger N-terminal sequences of Tir were also efficiently secreted and translocated into HeLa cells by the deltatirdeltacesT strain. However, in a deltatir mutant that expresses CesT, Tir26-CyaA and an additional fusion containing the first 69 N-terminal residues of Tir were not secreted or translocated, but fusions containing larger N-terminal Tir sequences were secreted and translocated by the deltatir mutant. Wild-type EPEC secreted and translocated the Tir15-CyaA fusion, whereas longer fusions, such as Tir26-CyaA and Tir69-CyaA, were translocated to higher levels, similar to what was observed with the deltatirdeltacesT mutant. A Tir-CyaA fusion containing the CesT binding domain was translocated into HeLa cells more rapidly in the presence of CesT compared with translocation in the absence of CesT. Collectively, these results suggest that an N-terminal domain of 26 amino acids functions as a CesT-independent signal that is capable of delivering Tir into both the culture supernatant and the cytosol of host cells. Furthermore, in addition to its role in the stability of Tir, CesT may function in translocation by mediating rapid delivery of Tir into host cells.  相似文献   

9.
Many Gram-negative pathogens use a type III secretion apparatus to deliver effector molecules into host cells to subvert cellular processes in favour of the pathogen. Enteropathogenic Escherichia coli (EPEC) uses such a system to deliver the Tir effector molecule into host cells. In this paper, we show that the gene upstream of tir , orf 19, encodes an additional type III secreted effector protein. Orf19 is delivered into host cells by a mechanism independent of endocytosis, but dependent on EspB. Orf19 is targeted to host mitochondria, where it appears to interfere with the ability to maintain membrane potential. Although the precise role of Orf19 remains to be elucidated, its interaction with mitochondria suggests a possible role in the subversion of key functions of these organelles, such as energy production or control of cell death. This is the first example of a type III secreted protein targeted to mitochondria; it is probable that homologues (present in EPEC and Shigella species) and other bacterial effectors will also target this organelle.  相似文献   

10.
Enteropathogenic Escherichia coli (EPEC) cause infantile diarrhoea and are characterized by their ability to produce attaching and effacing lesions on the surface of intestinal epithelial cells. EPEC employ a filamentous type III secretion system to deliver effector molecules that subvert mammalian cell function to generate actin- and cytokeratin-rich pedestals beneath adherent bacteria. Tir is a major effector protein that is delivered to the plasma membrane of the eukaryotic cell where it acts as the receptor for the bacterial adhesin intimin. Host cell proteins that are recruited to the site of intimate attachment include focal adhesion and cytoskeletal proteins that contribute to pedestal formation. We have used Tir as bait in a yeast two-hybrid screen to identify the protein 14-3-3tau as a binding partner. 14-3-3 proteins are a family of adaptor proteins that modulate protein function in all eukaryotic cells. Here we demonstrate that the tau isoform (also known as theta) of 14-3-3 can bind specifically to Tir in a phosphorylation-independent manner, and that the interaction occurs during the infection process by co-immunoprecipitation of the partners from infected HeLa cell extracts. 14-3-3tau is recruited to the site of the pedestal (3 h after infection) and can decorate attached EPEC in the later stages of the infection process (5-7 h). Pedestal formation can be impaired by depletion of cellular 14-3-3tau using small interfering RNAs. This study indicates a direct functional role for the 14-3-3tau:Tir interaction and is the first to demonstrate the association of a host protein with the surface of EPEC.  相似文献   

11.
The translocated intimin receptor (TIR) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) is required for EPEC and EHEC infections, which cause widespread illness across the globe. TIR is translocated via a type-III secretion system into the intestinal epithelial cell membrane, where it serves as an anchor for E. coli attachment via its binding partner intimin. While many aspects of EPEC and EHEC infection are now well understood, the importance of the intermolecular contacts made between intimin and TIR have not been thoroughly investigated. Herein we report site-directed mutagenesis studies on the intimin-binding domain of EPEC TIR, and how these mutations affect TIR-intimin association, as analyzed by isothermal titration calorimetry and circular dichroism. These results show how two factors govern TIR's binding to intimin: A three-residue TIR hot spot is identified that largely mediates the interaction, and mutants that alter the beta-hairpin structure of TIR severely diminish binding affinity. In addition, peptides incorporating key TIR residues identified by mutagenesis are incapable of binding intimin. These results indicate that hot spot residues and structural orientation/preorganization are required for EPEC, and likely EHEC, TIR-intimin binding.  相似文献   

12.
13.
Enteropathogenic Escherichia coli (EPEC) are a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. Enteropathogenic Escherichia coli encode a type III secretion system (TTSS) to transfer effector proteins into host cells, a process which is essential for virulence. In addition to generation of A/E lesions, the TTSS is also implicated in the ability of EPEC to invade cultured cells but the effector proteins responsible for promoting invasion have not been identified. In this paper we confirm the requirement of TTSS in EPEC invasion and demonstrate important roles for the Map and Tir effector molecules. Whereas in trans expression of Tir in the tir mutant restored invasion to wild-type levels, similar complementation of the map mutation by in trans expression of Map results in a hyperinvasive phenotype. The Map effector protein has two distinct functions within host cells, mediating Cdc42-dependent filopodia formation and targeting mitochondria to elicit dysfunction. The former function appears to be related to Map's ability to promote invasion as this was inhibited by interference with Cdc42 signalling. Conversely, Map targeting to mitochondria is not necessary for invasion. Promotion of EPEC invasion by Tir appears to involve interaction with intimin but is independent of pedestal formation, and intimin-Tir interaction is neither necessary nor sufficient for invasion. Comparison of the invasiveness of strains lacking Tir and/or Map with wild-type or mutant strains expressing the effectors in trans provides evidence that Map and Tir stimulate invasion by synergistic mechanisms. This synergism, which is in stark contrast to the antagonistic actions of Map and Tir in regulating filopodia and pedestal formation, further illustrates the complex interplay between EPEC effectors.  相似文献   

14.
Insertion of the enteropathogenic Escherichia coli Tir protein into the plasma membrane of intestinal epithelial cells is a crucial event in infection because it provides a receptor for intimate bacterial adherence. This interaction with the bacterial outer membrane protein intimin is also essential in generating a number of signaling activities associated with virulence. Tir can be modified at various sites by phosphorylation and functionally interacts with multiple host proteins. To investigate the mechanism of membrane insertion and to establish a model system in which the multiple interactions/functions of Tir can be uncoupled and independently characterized, we used intrinsic tryptophan fluorescence, surface plasmon resonance, and protease digestion assays to show that Tir can insert directly into phospholipid vesicles in a composition-dependent manner to generate the topology reported in vivo. This is the first time that Tir has been shown to insert into membranes in a simple model system in the absence of chemical modification or other factors. These data are consistent with the protein interacting with lipids through two sites. The major site is localized to the transmembrane/intimin-binding domain region and includes Trp235, which is shown to be an effective reporter of interaction. The minor site is located within the C-terminal domain. Together, these data support a model in which Tir is released into the cytoplasm by the type III translocon and then independently inserts into the plasma membrane from a cytoplasmic location. A thorough understanding of this mechanism will be crucial to understand the subtleties of enteropathogenic E. coli pathogenesis.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) infects intestinal epithelial cells and perturbs the intestinal barrier that limits the paracellular movement of molecules. The disruption of the barrier is mediated by the effectors translocated into the host cells through the bacterial type III secretion system (TTSS). A previous report has described the importance of a bacterial outer membrane protein, intimin, in EPEC-mediated disruption of the barrier, and proposed that intimin, in concert with a host intimin receptor, controls the activity of the translocated barrier-disrupting effectors [P. Dean, B. Kenny, Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein, Mol. Microbiol. 54 (2004) 665-675]. In this study, we found that the importance of intimin is in its ability to bind a bacterial intimin receptor, Tir. Additionally, the impaired ability of an intimin-negative mutant was not restored by co-infection with intimin-expressing TTSS mutants. Collectively, the results in this study favor an alternative scenario explaining the importance of intimin, that the binding of intimin with Tir on the bacterial surface triggers or promotes the translocation of factors required for the efficient disruption of the barrier. Thus, the interaction of intimin with Tir may serve as a molecular switch that controls the delivery of virulence factors into the host cells.  相似文献   

16.
Actin assembly beneath enterohemorrhagic E. coli (EHEC) attached to its host cell is triggered by the intracellular interaction of its translocated effector proteins Tir and EspF(U) with human IRSp53 family proteins and N-WASP. Here, we report the structure of the N-terminal I-BAR domain of IRSp53 in complex with a Tir-derived peptide, in which the homodimeric I-BAR domain binds two Tir molecules aligned in parallel. This arrangement provides a protein scaffold linking the bacterium to the host cell's actin polymerization machinery. The structure uncovers?a specific peptide-binding site on the I-BAR surface, conserved between IRSp53 and IRTKS. The Tir Asn-Pro-Tyr (NPY) motif, essential for pedestal formation, is specifically recognized by this binding site. The site was confirmed by mutagenesis and in?vivo-binding assays. It is possible that IRSp53 utilizes the NPY-binding site for additional interactions with as yet unknown partners within the host cell.  相似文献   

17.
The enteropathogenic Escherichia coli (EPEC) Tir protein becomes tyrosine phosphorylated in host cells and displays an increase in apparent molecular mass. The interaction of Tir with the EPEC outer membrane protein, intimin, triggers actin nucleation beneath the adherent bacteria. The enterohaemorrhagic E. coli O157:H7 (EHEC) Tir molecule is not tyrosine phosphorylated. In this paper, Tir tyrosine phosphorylation is shown to be essential for actin nucleation activity, but not for the increase in apparent molecular mass observed in target cells. Tyrosine phosphorylation had no role in Tir molecular mass shift, indicating additional host modifications. Analysis of Tir intermediates indicates that tyrosine-independent modification functions to direct Tir's correct insertion from the cytoplasm into the host membrane. Deletion analysis identified Tir domains participating in translocation, association with the host membrane, modification and antibody recognition. Intimin was found to bind a 55-amino-acid region (TIBA) within Tir that topological and sequence analysis suggests is located in an extracellular loop. Homologous TIBA sequences exist in integrins, which also bind intimin. Collectively, this study provides definitive evidence for the importance of tyrosine phosphorylation for EPEC Tir function and reveals differences in the pathogenicity of EPEC and EHEC. The data also suggest a mechanism for Tir insertion into the host membrane, as well as providing clues to the mode of intimin-integrin interaction.  相似文献   

18.
We report the functional characterization of BipA, a GTPase that undergoes tyrosine phosphorylation in an enteropathogenic Escherichia coli (EPEC) strain. BipA mutants adhere to cultured epithelial cells but fail to trigger the characteristic cytoskeletal rearrangements found in cells infected with wild-type EPEC. In contrast, increased expression of BipA enhances actin remodelling and results in the hyperformation of pseudopods. BipA appears to be the first example of a new class of virulence regulator, as it also controls flagella-mediated cell motility and resistance to the antibacterial effects of a human host defence protein. Its striking sequence similarity to ribosome-binding elongation factors suggests that it uses a novel mechanism to modulate gene expression.  相似文献   

19.
Enteropathogenic Escherichia coli (EPEC) attaches intimately to mammalian cells via a bacterial outer membrane adhesion molecule, intimin, and its receptor in the host cell membrane, Tir. Tir is a bacterial protein translocated into the host cell membrane and tyrosine phosphorylated after insertion. Tir–intimin binding induces organized actin polymerization beneath the adherent bacteria, resulting in the formation of pedestal-like structures. A series of Tir deletion derivatives were constructed to analyse which Tir domains are involved in intimin binding. We have localized the intimin-binding domain (IBD) of Tir using a yeast two-hybrid system and a gel-overlay approach to a region of 109 amino acids that is predicted to be exposed on the surface of the plasma membrane. A truncated Tir protein lacking this domain was translocated to the host cell membrane and tyrosine phosphorylated, but failed to bind intimin or to induce either actin polymerization or Tir accumulation beneath the bacteria. These results indicate that only a small region of Tir is needed to bind intimin and support the predicted topology for Tir, with both N- and C-terminal regions in the mammalian cell cytosol. They also confirm that Tir–intimin interactions are needed for cytoskeletal organization. We have also identified N-terminal regions involved in Tir stability and Tir secretion to the media.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) induce gross cytoskeletal rearrangement within epithelial cells, immediately beneath the attached bacterium. The C-terminal 280 amino acid residues of intimin (Int280; 30.1 kDa), a bacterial cell-adhesion molecule, mediate the intimate bacterial host-cell interaction. Recently, interest in this process has been stimulated by the discovery that the bacterial intimin receptor protein (Tir) is translocated into the host cell membrane, phosphorylated, and after binding intimin triggers the intimate attachment. Using multidimensional nuclear magnetic resonance (NMR) and combining perdeuteration with site-specific protonation of methyl groups, we have determined the global fold of Int280. This represents one of the largest, non-oligomeric protein structures to be determined by NMR that has not been previously resolved by X-ray crystallography. Int280 comprises three domains; two immunoglobulin-like domains and a C-type lectin-like module, which define a new family of bacterial adhesion molecules. These findings also imply that carbohydrate recognition may be important in intimin-mediated cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号