共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS 总被引:23,自引:0,他引:23
Wu Y Bressette D Carrell JA Kaufman T Feng P Taylor K Gan Y Cho YH Garcia AD Gollatz E Dimke D LaFleur D Migone TS Nardelli B Wei P Ruben SM Ullrich SJ Olsen HS Kanakaraj P Moore PA Baker KP 《The Journal of biological chemistry》2000,275(45):35478-35485
An expression cloning approach was employed to identify the receptor for B-lymphocyte stimulator (BLyS) and identified the tumor necrosis factor receptor superfamily member TACI as a BLyS-binding protein. Expression of TACI in HEK293T cells confers on the cells the ability to bind BLyS with subnanomolar affinity. Furthermore, a TACI-Fc fusion protein recognizes both the cleaved, soluble form of BLyS as well as the membrane BLyS present on the cell surface of a recombinant cell line. TACI mRNA is found predominantly in B-cells and correlates with BLyS binding in a panel of B-cell lines. We also demonstrate that TACI interacts with nanomolar affinity with the BLyS-related tumor necrosis factor homologue APRIL for which no clear in vivo role has been described. BLyS and APRIL are capable of signaling through TACI to mediate NF-kappaB responses in HEK293 cells. We conclude that TACI is a receptor for BLyS and APRIL and discuss the implications for B-cell biology. 相似文献
2.
Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA 总被引:7,自引:0,他引:7
BAFF (B cell activating factor of the TNF family, also known as BlyS and TALL-1), a TNF family cytokine critical for the development and function of B cells, has been reported to bind to three receptors, BCMA (B cell maturation protein), TACI (transmembrane activator and CAML [calcium-modulator and cyclophilin ligand] interactor), and BAFFR (BAFF receptor), but with widely conflicting values for the affinity and selectivity of binding. BCMA and TACI additionally bind APRIL (a proliferation-inducing ligand), the TNF family ligand most homologous to BAFF. Using soluble, monomeric forms of the receptors, we demonstrate that BAFFR binds BAFF with K(D) approximately 16 nM, while BCMA binds with K(D) approximately 1.6 microM, indicating a approximately 100-fold selectivity for binding to BAFFR over BCMA. APRIL shows the opposite selectivity, binding to BCMA with K(D) approximately 16 nM while showing no detectable affinity for BAFFR (K(D) > 3 microM). The binding of BAFF or APRIL to these receptors is highly sensitive to assay-dependent avidity effects, likely explaining the widely ranging affinity values reported in the literature. Binding of BAFF to BCMA-Fc, a bivalent fusion protein consisting of the extracellular domain of BCMA fused to the hinge and CH1 and CH2 domains of human IgG1, in solution or coated onto an ELISA plate gave apparent binding affinities of approximately 0.63 and approximately 0.15 nM, respectively, compared to values of K(D(app)) 相似文献
3.
Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL 总被引:34,自引:0,他引:34
He B Chadburn A Jou E Schattner EJ Knowles DM Cerutti A 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(5):3268-3279
4.
Yu Tian Yan-feng Zhu Zhen Wu Jian-nan Feng Yan Li Bei-fen Shen Jian Sun 《Biotechnology letters》2013,35(4):523-528
B lymphocyte stimulator (BLyS) antagonists are new therapeutic reagents for treating the autoimmune diseases. Peptibodies can inhibit the bioactivity of BLyS, the same as other BLyS antagonists: decoyed BLyS receptors and anti-BLyS antibodies. In this study, a new optimized BLyS antagonist peptide was designed according to our previous work by the computer-aided homology modeling. Competitive ELISA showed that the peptide at 100 μg/ml could inhibit 54 % of the BCMA-Fc binding to BLyS. To maintain its stability and spatial conformation, the peptide was fused to human IgG1 Fc to form a peptide-Fc fusion protein—a novel peptibody by gene engineering. ELISA indicated that the peptibody could bind with BLyS in dosage-dependent manner as BCMA-Fc did. This study highlights the possibility of designing and optimizing BLyS antagonist peptides with high biopotency by the computer-aided design. Thus, these peptides could neutralize BLyS activity and be potential antagonists to treat autoimmune diseases related with BLyS overexpression. 相似文献
5.
A novel BLyS antagonist peptide designed based on the 3-D complex structure of BCMA and BLyS 总被引:2,自引:0,他引:2
B lymphocyte stimulator (BLyS) is a member of tumor necrosis factor (TNF) family. Because of its roles in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjogren syndrome (SS), BLyS antagonists have been tested to treat SLE- and RA-like symptoms in mice and obtained optimistic results. So far, reported BLyS antagonists were mostly decoyed BLyS receptors or anti-BLyS antibodies. In this study, a novel BLyS antagonist peptide, PT, was designed based on the modeling 3-D complex structure of BCMA and BLyS. The interaction mode of PT with BLyS was analyzed theoretically. The results of competitive ELISA demonstrated that PT could inhibit the binding of BCMA-Fc and anti-BLyS antibody to BLyS in vitro. In addition, PT could partly block the proliferating activity of BLyS on mice splenocytes. The BLyS antagonizing activity of PT was significant (p<0.05). This study highlights the possibility of using BLyS antagonist peptide to neutralize BLyS activity. Further optimization of PT with computer-guided molecular design method to enhance its biopotency may be useful in developing new BLyS antagonists to treat BLyS-related autoimmune diseases. 相似文献
6.
TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties 总被引:2,自引:0,他引:2
BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering na?ve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action. 相似文献
7.
8.
Vassiliki Pelekanou George Notas Marilena Kampa Eleftheria Tsentelierou Efstathios N. Stathopoulos Andreas Tsapis Elias Castanas 《PloS one》2013,8(12)
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells'' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype. 相似文献
9.
Generation and characterization of C305, a murine neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA 总被引:1,自引:0,他引:1
Liu MY Han W Ding YL Zhou TH Tian RY Yang SL Liu H Gong Y 《Acta biochimica et biophysica Sinica》2005,37(6):415-420
B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pill protein of MI 3 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA. 相似文献
10.
William Stohl 《Arthritis research & therapy》2010,12(2):111
BLyS and APRIL are closely related members of the TNF ligand superfamily. These cytokines individually may contribute importantly
to the development and maintenance of systemic lupus erythematosus (SLE). Dillon and colleagues demonstrate that in contrast
to most members of the TNF ligand superfamily, which form only homotrimers, BLyS and APRIL can complex as heterotrimers. These
complexes have in vitro biological activity, and circulating levels of BLyS/APRIL heterotrimers are frequently elevated in SLE, but not rheumatoid
arthritis, patients. Although the mechanism and regulation of heterotrimer formation, the interconversion (if any) between
homotrimers and heterotrimers, and, indeed, the normal physiologic role for such heterotrimers remain unknown, their preferential
overexpression in SLE, but not in rheumatoid arthritis, raises the possibility that such heterotrimers may be playing a contributory
role in SLE. 相似文献
11.
The TNF family members BAFF and APRIL: the growing complexity 总被引:19,自引:0,他引:19
B cell activating factor belonging to the TNF family (BAFF) and apoptosis-inducing ligand (APRIL) are two related members of the TNF ligand superfamily. Although they share two receptors, TACI and BCMA, transgenic and knockout mice in this system reveal that their functions are not redundant. BAFF is a critical survival/maturation factor for peripheral B cells and this activity is mediated through a BAFF-specific receptor, BAFF-R. Overexpression of BAFF has been linked to autoimmune disease and aspects of B cell neoplasia. APRIL appears to play a role in T-independent type II antigen responses and T cell survival, but can also induce proliferation/survival of non-lymphoid cells. Elevated expression of APRIL has been found in some tumor cell lines and in tumor tissue libraries. Therapies designed to inhibit the BAFF and APRIL pathways holds great promise for the future. 相似文献
12.
BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases 总被引:20,自引:0,他引:20
Roschke V Sosnovtseva S Ward CD Hong JS Smith R Albert V Stohl W Baker KP Ullrich S Nardelli B Hilbert DM Migone TS 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(8):4314-4321
BLyS and APRIL are two members of the TNF superfamily that are secreted by activated myeloid cells and have costimulatory activity on B cells. BLyS and APRIL share two receptors, TACI and BCMA, whereas a third receptor, BAFF-R, specifically binds BLyS. Both BLyS and APRIL have been described as homotrimeric molecules, a feature common to members of the TNF superfamily. In this study, we show that APRIL and BLyS can form active heterotrimeric molecules when coexpressed and that circulating heterotrimers are present in serum samples from patients with systemic immune-based rheumatic diseases. These findings raise the possibility that active BLyS/APRIL heterotrimers may play a role in rheumatic and other autoimmune diseases and that other members of the TNF ligand superfamily may also form active soluble heterotrimers. 相似文献
13.
Structural basis of BLyS receptor recognition 总被引:6,自引:0,他引:6
Oren DA Li Y Volovik Y Morris TS Dharia C Das K Galperina O Gentz R Arnold E 《Nature structural biology》2002,9(4):288-292
B lymphocyte stimulator (BLyS), a member of the tumor necrosis factor (TNF) superfamily, is a cytokine that induces B-cell proliferation and immunoglobulin secretion. We have determined the three-dimensional structure of BLyS to 2.0 A resolution and identified receptor recognition segments using limited proteolysis coupled with mass spectrometry. Similar to other structurally determined TNF-like ligands, the BLyS monomer is a beta-sandwich and oligomerizes to form a homotrimer. The receptor-binding region in BLyS is a deeper, more pronounced groove than in other cytokines. The conserved elements on the 'floor' of this groove allow for cytokine recognition of several structurally related receptors, whereas variations on the 'walls' and outer rims of the groove confer receptor specificity. 相似文献
14.
BAFF/BLyS receptor 3 comprises a minimal TNF receptor-like module that encodes a highly focused ligand-binding site 总被引:4,自引:0,他引:4
Gordon NC Pan B Hymowitz SG Yin J Kelley RF Cochran AG Yan M Dixit VM Fairbrother WJ Starovasnik MA 《Biochemistry》2003,42(20):5977-5983
BAFF/BLyS, a member of the tumor necrosis family (TNF) superfamily of ligands, is a crucial survival factor for B cells. BAFF binds three receptors, TACI, BCMA, and BR3, with signaling through BR3 being essential for promoting B cell function. Typical TNF receptor (TNFR) family members bind their cognate ligands through interactions with two cysteine-rich domains (CRDs). However, the extracellular domain (ECD) of BR3 consists of only a partial CRD, with cysteine spacing distinct from other modules described previously. Herein, we report the solution structure of the BR3 ECD. A core region of only 19 residues adopts a stable structure in solution. The BR3 fold is analogous to the first half of a canonical TNFR CRD but is stabilized by an additional noncanonical disulfide bond. BAFF-binding determinants were identified by shotgun alanine-scanning mutagenesis of the BR3 ECD expressed on phage. Several of the key BAFF-binding residues are presented from a beta-turn that we have shown previously to be sufficient for ligand binding when transferred to a structured beta-hairpin scaffold [Kayagaki, N., Yan, M., Seshasayee, D., Wang, H., Lee, W., French, D. M., Grewal, I. S., Cochran, A. G., Gordon, N. C., Yin, J., Starovasnik, M. A, and Dixit, V. M. (2002) Immunity 10, 515-524]. Outside of the turn, mutagenesis identifies additional hydrophobic contacts that enhance the BAFF-BR3 interaction. The crystal structure of the minimal hairpin peptide, bhpBR3, in complex with BAFF reveals intimate packing of the six-residue BR3 turn into a cavity on the ligand surface. Thus, BR3 binds BAFF through a highly focused interaction site, unprecedented in the TNFR family. 相似文献
15.
Josquin Nys Cristian R. Smulski Aubry Tardivel Laure Willen Christine Kowalczyk Olivier Donzé Bertrand Huard Henry Hess Pascal Schneider 《PloS one》2013,8(4)
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called “reverse signalling”. In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells. 相似文献
16.
Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding 总被引:7,自引:0,他引:7
Hymowitz SG Patel DR Wallweber HJ Runyon S Yan M Yin J Shriver SK Gordon NC Pan B Skelton NJ Kelley RF Starovasnik MA 《The Journal of biological chemistry》2005,280(8):7218-7227
TACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. TACI binds two ligands, APRIL and BAFF, with high affinity and contains two cysteine-rich domains (CRDs) in its extracellular region; in contrast, BCMA and BR3, the other known high affinity receptors for APRIL and BAFF, respectively, contain only a single or partial CRD. However, another form of TACI exists wherein the N-terminal CRD is removed by alternative splicing. We find that this shorter form is capable of ligand-induced cell signaling and that the second CRD alone (TACI_d2) contains full affinity for both ligands. Furthermore, we report the solution structure and alanine-scanning mutagenesis of TACI_d2 along with co-crystal structures of APRIL.TACI_d2 and APRIL.BCMA complexes that together reveal the mechanism by which TACI engages high affinity ligand binding through a single CRD, and we highlight sources of ligand-receptor specificity within the APRIL/BAFF system. 相似文献
17.
Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells 总被引:3,自引:0,他引:3
Chen X Bäumel M Männel DN Howard OM Oppenheim JJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(1):154-161
Although TNF is a major proinflammatory cytokine, increasing evidence indicates that TNF also has immunosuppressive feedback effects. We have demonstrated in this study that, in both resting and activated states, mouse peripheral CD4(+)CD25(+) T regulatory cells (Tregs) expressed remarkably higher surface levels of TNFR2 than CD4(+)CD25(-) T effector cells (Teffs). In cocultures of Tregs and Teffs, inhibition of proliferation of Teffs by Tregs was initially transiently abrogated by exposure to TNF, but longer exposure to TNF restored suppressive effects. Cytokine production by Teffs remained continually suppressed by Tregs. The profound anergy of Tregs in response to TCR stimulation was overcome by TNF, which expanded the Treg population. Furthermore, in synergy with IL-2, TNF expanded Tregs even more markedly up-regulated expression of CD25 and FoxP3 and phosphorylation of STAT5, and enhanced the suppressive activity of Tregs. Unlike TNF, IL-1beta and IL-6 did not up-regulate FoxP3-expressing Tregs. Furthermore, the number of Tregs increased in wild-type mice, but not in TNFR2(-/-) mice following sublethal cecal ligation and puncture. Depletion of Tregs significantly decreased mortality following cecal ligation and puncture. Thus, the stimulatory effect of TNF on Tregs resembles the reported costimulatory effects of TNF on Teffs, but is even more pronounced because of the higher expression of TNFR2 by Tregs. Moreover, our study suggests that the slower response of Tregs than Teffs to TNF results in delayed immunosuppressive feedback effects. 相似文献
18.
Ch'en PF Xu XG Liu XS Liu Y Song CJ Screaton GR Jin BQ Xu XN 《Cellular immunology》2005,236(1-2):78-85
Tumour necrosis factor (TNF) family ligands and their corresponding receptors play important roles in the immune system and are involved in immune regulation such as lymphoid development, cell proliferation, differentiation, activation and death. Antibodies against these ligands and receptors together with Fc-fusion proteins, have been particularly useful as immunological tools in addressing the underlying involvement of these proteins in these contexts and furthermore, have given us hope in using them as potential therapeutic agents. Over last few years, there have been many additions to these ever-growing TNF family ligands and their receptors. Here, we have generated and characterised a set of monoclonal antibodies, together with mAbs from the HLDA workshop, against DcR1, DcR2, DR4, DR5, TRAIL, APRIL, BAFF, BAFF-R, BCMA, and TACI, which may be useful in phenotypic and functional studies of the role of TNF and TNF receptor family in immune function and regulation in relation to health and disease. 相似文献
19.
20.
Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of NFkappaB and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of NFkappaB and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in NFkappaB activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1. 相似文献