首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although interactions between alien and native plant species are well studied, data on interactions between two co-existing alien species with respect to their invasibility are scarce. The aims of this study were (1) to evaluate three factors shaping abundance of the alien shrub species Cornus alternifolia: abundance of another alien (invasive) shrub species (Prunus serotina), type of tree stand (coniferous vs. broadleaved) and distance to propagule sources and (2) to assess the potential dispersal distance of the species studied. Densities of both species were assessed within 194 experimental plots (located in experimental plantations of trees) in Rogów Arboretum (Central Poland). P. serotina occurred on 79 and C. alternifolia on 33 of the 194 plots. The furthest distance of C. alternifolia from the propagule source was 338 m. C. alternifolia reached higher densities in coniferous than broadleaved tree stands. Density of C. alternifolia depended on tree stand type and distance from the propagule source, but did not depend on density of P. serotina. Density of C. alternifolia decreased with increasing distance from the propagule source; however, this relationship was modified by the type of tree stand: densities were lower in broadleaved than in coniferous stands. The presence of the invasive species seems to neither facilitate nor limit the dispersal distance of C. alternifolia, as these two species differ in shade tolerance. The study also provided the first information about C. alternifolia potential invasiveness, because earlier this species was noticed only as casually escaping from cultivation in Slovakia.  相似文献   

2.
3.
Brassinolide (BR) is crucial for regulating plant architecture. Apple dwarfing rootstocks are used to control apple tree size. However, information regarding the effects of BR on apple trees is limited. In addition, the molecular mechanism underlying the dwarfing of apple rootstocks is poorly understood. To elucidate the role of BR signal transduction genes in controlling apple tree architecture, five BR receptor kinase 1 (BRI1), nine BR-signaling kinase 1 (BSK1), two BRI1 KINASE INHIBITOR 1 (BKI1), and seven BR-insensitive 2 (BIN2) genes were analyzed. Bioinformatic analyses revealed that gene duplication events likely contributed to the expansion and evolution of the identified genes. Nine homologs between apple and Arabidopsis thaliana were also identified, and their expression patterns in different tissues were characterized. Exogenous BR treatments increased the primary shoot length and altered the expression of BR signal transduction genes (MdBRI1-5, MdBSK3-8, MdBKI12, MdBIN14, and MdBIN6/7). The scion of Fuji/Malling 9 (M.9) trees exhibited inhibited growth compared with that of Fuji/Fuji trees. The Fuji/M.9 trees had lower levels of the positive regulators of BR signaling (MdBRI1-5,MdBSK1, MdBSK4/7, and MdBSK6) and higher levels of the negative regulators (MdBIN5-7) compared with the Fuji/Fuji trees. Thus, the above-mentioned genes may help to regulate apple tree size in response to BR. In addition, MdBRI15, MdBSK1, MdBSK4/7, MdBSK6, and MdBIN57 have important roles in different grafting combinations. Our results may provide the basis for future analyses of BR signal transduction genes regarding their potential involvement in the regulation of plant architecture.  相似文献   

4.

Key message

Sunlight is a key environmental factor in growth, flowering and shaping of the Dracaena draco tree. Unidirectional light deforms the tree and may cause it to tilt.

Abstract

Dracaena draco, a tree-like monocot, lives in cycles of vegetative growth and flowering. The cycles, as well as the tree growth form, are under genetic control. What controls their length has been unknown before. We propose that it is sunlight. Our trees of the same origin, growing for 20 years in the garden in varying sunlight conditions, started to flower when 9–12, 16 and 18–19 years old, for those growing in full sun, part shade and shade, respectively. In full sun, they grow shorter trunks than those in shade, catching overhead sun. Their branches also had shorter or longer growth and flowering cycles depending on sunlight availability. D. draco tree exhibited strong phototropic response and its crown was organized by the direction of growing tips. In full and in overhead sun, it had a regular form but asymmetrical in unidirectional, oblique sunlight. An asymmetrical crown and the absence of reaction wood may cause the D. draco tree tilting and progressive loss of balance.
  相似文献   

5.
Understanding intraspecific interactions among Persian oaks is essential to predict the responses of Zagros dry woodlands purely covered by these coppice trees to environmental changes (such as drought) that have direct effects on the sustainability of these woodlands. This investigation attempted to explore the scale-dependent competition among Persian oaks and highlight the impacts of competitive interactions on their biophysical properties (i.e. tree height, diameter at root collar and crown attributes) via point pattern analysis. Structurally different summary statistics were implemented to analyse the spatial pattern of Persian oaks in a pure 9-ha study plot. Nearest neighbour distribution function D(r) indicated that these coppice trees had no nearest neighbours up to the spatial scale of 2 m, and they all had a nearest neighbour at distances shorter than 12 m. Furthermore, pair correlation function g(r) showed the significant dispersion of Persian oaks up to the scale of 5 m, which may be the outcome of intraspecific competition for resources such as soil nutrients and water. As explored by mark variograms γ m (r), Persian oaks of the same size had significant spatial correlations that illustrated the competitive (not facilitative) interactions of these coppice trees in the study plot. Mark correlation function k mm (r) additionally revealed negative correlations of height and radial growth up to large spatial scales. Consequently, the outcome of this study highlighted the significant effects of competitive intraspecific interactions among Persian oak coppice trees on their spatial pattern and biophysical properties.  相似文献   

6.
Pathogens can cause chronic premature needle abscission in coniferous species. To assess the potential impacts on tree productivity, stomatal regulation was investigated in Douglas fir with chronic stomatal occlusion and defoliation from varying levels of the Swiss needle cast (SNC) fungus, Phaeocryptopus gaeumannii. Levels of SNC disease and subsequent defoliation were manipulated by choosing six sites with varying levels of disease and by foliar applications of fungicides on six trees per site. Diurnal measurements of leaf water potential (Ψleaf), stomatal conductance (g s) and vapor pressure deficit (D) were made on six fungicide treated and six control trees per site. In addition, leaf specific hydraulic conductance was calculated on a single branch (K L_B) from three trees per treatment per site. Stomatal conductance at D=1 kPa (g sref) was negatively correlated with fungal colonization (number of fruiting bodies present in needle stomata) and positively correlated with K L_B. Despite reduced needle retention in diseased trees, K L declined due to a reduction in sapwood area and permeability (i.e., increasing presence of latewood in functional sapwood). In general, stomatal sensitivity to D for all foliage was consistent with stomatal regulation based on a simple hydraulic model [g s=K Lsoilleaf)/ D], which assumes strict stomatal regulation of Ψleaf. However, when fungal presence reduced maximum g s below the potential maximum supported by hydraulic architecture, stomatal sensitivity was lower than expected based on the theoretical relationship: dg s/dlnD=0.6·g sref. The results indicate that losses in productivity associated with physical blockage of stomata and defoliation are compounded by additional losses in K L and a reduction in g s in remaining functional stomata.  相似文献   

7.
Integration between ecology and biogeography provides insights into how niche specialization affects the geographical distribution of species. Given that rivers are not effective barriers to dispersal in three parapatric species of squirrel monkeys (Saimiri vanzolinii, S. cassiquiarensis and S. macrodon) inhabiting floodplain forests of Central Amazonia, we tested whether forest structure and tree diversity may explain species differences in niche specialization and spatial segregation. We sampled 6617 trees of 326 species in three habitats (high várzea, low várzea and chavascal) used by three Saimiri species, and estimated tree species richness in each of them. For each tree, we measured variables known to influence habitat use in primates, such as crown area and presence of lianas, epiphytes and hemi-epiphytes. We used ANOVA to compare these variables and performed multivariate analyses (NMDS, ANOSIM and SIMPER) to evaluate dissimilarities in forest structure among each habitat inhabited by the three Saimiri species. We identified differences in the tree species richness, crown area and presence of lianas, epiphytes and hemi-epiphytes between the three habitats for all Saimiri species. NMDS demonstrated that areas of high and low várzeas occupied by S. vanzolinii were clearly separated from the other species. We also found that different plant species contributed to dissimilarity among Saimiri ranges. Our findings support the hypothesis that tree community structure may promote niche specialization and spatial segregation among primates. We discuss how these patterns could have been favored by historical changes in forest flood patterns, the evolutionary history of Saimiri spp., and past competition.  相似文献   

8.
Pronounced strategy shifts along ontogeny have been observed in several tree species, mainly because of the trend to maximize growth during the seedling stage, which constitutes the most vulnerable part of the tree’s life cycle. Our aim here was to analyze the ontogenetic changes in crown characteristics and light capture patterns in three Quercus species: the evergreens Quercus ilex and Quercus suber and the deciduous Quercus faginea co-occurring in a Mediterranean open woodland. The seedlings were distributed in the large clearings among the adults and received full sunlight. We constructed three-dimensional models of the aerial parts of seedlings and mature trees of the three species, using the YplantQMC program. Large differences between growth stages were observed for all variables. The seedlings exhibited smaller branch sizes and crown densities than those observed in the adult trees. Leaf angles to horizontal also tended to increase during ontogeny, whereas leaf dispersion and the observed distances between leaves tended to decrease. The amount of photosynthetic radiation absorbed per unit leaf area throughout the growing season was lower in adult specimens than in young specimens. Changes in absorption efficiency during ontogeny were more intense for the species with longer leaf life span at maturity. We conclude that more intense ontogenetic shifts in species with longer leaf life span reflect the priority change from the maximization of short-term productivity at the seedling stage to maximizing leaf longevity during the adult stage.  相似文献   

9.

Background

The history of gene families—which are equivalent to event-labeled gene trees—can be reconstructed from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous or xenologous genes. The question then arises as whether inferred event-labeled gene trees are biologically feasible, that is, if there is a possible true history that would explain a given gene tree. In practice, this problem is boiled down to finding a reconciliation map—also known as DTL-scenario—between the event-labeled gene trees and a (possibly unknown) species tree.

Results

In this contribution, we first characterize whether there is a valid reconciliation map for binary event-labeled gene trees T that contain speciation, duplication and horizontal gene transfer events and some unknown species tree S in terms of “informative” triples that are displayed in T and provide information of the topology of S. These informative triples are used to infer the unknown species tree S for T. We obtain a similar result for non-binary gene trees. To this end, however, the reconciliation map needs to be further restricted. We provide a polynomial-time algorithm to decide whether there is a species tree for a given event-labeled gene tree, and in the positive case, to construct the species tree and the respective (restricted) reconciliation map. However, informative triples as well as DTL-scenarios have their limitations when they are used to explain the biological feasibility of gene trees. While reconciliation maps imply biological feasibility, we show that the converse is not true in general. Moreover, we show that informative triples neither provide enough information to characterize “relaxed” DTL-scenarios nor non-restricted reconciliation maps for non-binary biologically feasible gene trees.
  相似文献   

10.

Key message

The paper demonstrates the prospects and applications of dendrochronology for understanding climate change effects on riparian forests in the savanna landscape. 

Abstract

Riparian trees in savannas have a potential for dendro-climatic studies, but have been neglected hitherto. We examined ring-width series of Afzelia africana (evergreen) and Anogeissus leiocarpus (deciduous) to study the influence of climatic factors on the growth of riparian trees in the humid (HS) and dry (DS) savanna zones of the Volta basin in Ghana. A total of 31 stem discs belonging to A. africana and A. leiocarpus were selected from HS and DS to establish species-specific local chronologies of tree growth. Each individual of A. africana and A. leiocarpus from the two savanna sites showed distinct growth rings. Cross-dating of individual tree-ring patterns was successful using standard dendrochronological techniques. The mean annual growth rates of A. africana in the HS (1.38 ± 0.09) and DS (1.34 ± 0.08) were not statistically different. Furthermore, mean annual growth rate of A. leiocarpus in the DS (3.75 ± 0.27) was higher than in the HS (2.83 ± 0.16) suggesting that species in drier environment can have higher growth rates when sufficient soil moisture is available. The growth rates of both species at the same sites were different, which might indicate different water use strategies. High correlations of individual tree-ring series of A. africana and A. leiocarpus trees at HS and DS suggest a strong climatic forcing controlled by the seasonal movement of the inter-tropical convergence zone. The annual growth of A. africana and A. leiocarpus at both the HS and DS was significantly correlated with local temperature and precipitation. The negative correlations of the growth of the two tree species to global sea surface temperatures were however, indications that the growth of riparian forests can be impacted during El Niño-Southern Oscillation years. The result of our study shows that riparian trees in the humid and dry savanna zones of West Africa can be successfully used for dendrochronological studies.
  相似文献   

11.
Macrodasyceras hirsutum Kamijo is the seed parasitoid wasp of the bird-dispersed, dioecious tree, Ilex integra Thunb. The wasp reduces the level of dispersal mutualism between the Ilex tree and its frugivorous birds by manipulating the color of mature berries. The female trees do not blossom every year and sometimes change sex. Thus, the reproduction biology of I. integra affects the population size and structure of M. hirsutum in a forest and consequently influences the seed dispersal mutualism between the tree and birds, because of limited ability of adult locomotion. To investigate the wasp population structure with reference to the dispersal mutualism between trees and birds, we isolated 14 microsatellite loci of M. hirsutum wasps. Every locus was polymorphic among 20 females, with 3–13 alleles per locus, without linkage disequilibrium. The observed and expected heterozygosities ranged from 0.100 to 0.900 and 0.099 to 0.818, respectively, indicating their utility in molecular analyses of the wasp population.  相似文献   

12.
Macaranga is a tree genus that includes many species of myrmecophytes, which are plants that harbor ant colonies within hollow structures known as domatia. The symbiotic ants (plant–ants) protect their host plants against herbivores; this defense mechanism is called ‘ant defense’. A Bornean phasmid species Orthomeria cuprinus feeds on two myrmecophytic Macaranga species, Macaranga beccariana and Macaranga hypoleuca, which are obligately associated with Crematogaster ant species. The phasmids elude the ant defense using specialized behavior. However, the mechanisms used by the phasmid to overcome ant defenses have been insufficiently elucidated. We hypothesized that O. cuprinus only feeds on individual plants with weakened ant defenses. To test the hypothesis, we compared the ant defense intensity in phasmid-infested and non-infested M. beccariana trees. The number of plant–ants on the plant surface, the ratio of plant–ant biomass to tree biomass, and the aggressiveness of plant–ants towards experimentally introduced herbivores were significantly lower on the phasmid-infested trees than on the non-infested trees. The phasmid nymphs experimentally introduced into non-infested trees, compared with those experimentally introduced into phasmid-infested trees, were more active on the plant surface, avoiding the plant–ants. These results support the hypothesis and suggest that ant defenses on non-infested trees effectively prevent the phasmids from remaining on the plants. Thus, we suggest that O. cuprinus feeds only on the individual M. beccariana trees having decreased ant defenses, although the factors that reduce the intensity of the ant defenses remain unclear.  相似文献   

13.
The southern coast of Baikal is characterized by the most humid climate in the Baikal region. Precipitation falls mainly on summer, thus reducing the actual of fire occurrence in mountain forests of the region. However, since 1989 the fire occurrence has been increased and disastrous crown fires have become more frequent, especially in the west. It is shown that fire occurrence is a function of the number, duration of rainless periods and monthly sums of rain precipitation, which have large amplitude of changes from year to year. Progressive pyrogenic successions in dark coniferous forests take place mostly without usual replacement by small-leaved tree species at the expense of successful regeneration of Pinus sibirica (in the western Khamar-Daban mountains) and Abies sibirica (in the central part) on the burnt areas during 15–25 years.  相似文献   

14.
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree—a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes—called the “species tree.” One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the “concordance” with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping—but not identical—sets of labels, is called “supertree.” In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of “containing as a minor” and “containing as a topological minor” in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time \(2^{O(k^2)} \cdot n\), where n is the total size of the input.  相似文献   

15.
We assembled a dataset tabulating the weights of Thai and Indonesian mangrove trees that we measured between 1982 and 2001. We selected four Thai study sites in Phang Nga, Ranong, Satun, and Trat Provinces and one site in eastern Indonesia on Halmahera Island in Maluku Province. The stands in Ranong Province and on Halmahera Island were in primary forests with data collected in the 1980s and the remaining stands were in secondary forests with data collected later. We collected 124 tree samples from ten species (Avicennia alba, Bruguiera cylindrica, B. gymnorrhiza, Ceriops tagal, Rhizophora apiculata, R. mucronata, Sonneratia alba, S. caseolaris, Xylocarpus granatum, and X. moluccensis) and measured the root weights of 32 individuals of nine species (A. alba, B. cylindrica, B. gymnorrhiza, C. tagal, R. apiculata, R. mucronata, S. alba, S. caseolaris, and X. granatum). All sampled trees were subjected to a standardized protocol to obtain aboveground weights. The trunks were divided into horizontal segments from which the leaves and branches were collected separately. Roots were collected by winching them out of the ground, by trench digging, or by complete excavation. Thus, we were able to compile the weights of the trunk, branches, leaves, and roots of each tree sampled. Aerial roots were included in root weight measurements, although they were collected above ground. We compiled separate lists of trunk diameters, trunk heights, heights of the lowest living branches, and the heights of aerial roots on the trunks of trees in different size categories. Our dataset includes a wide range of tree sizes (maximum trunk diameter 48.9 cm), geographical locations (1°10′N–12°24′N, 98°32′E–123°49′E) and organ weights (trunks, branches, leaves, and roots), and therefore should prove useful in future biomass studies of mangrove forests.  相似文献   

16.

Key message

Across five biogeographic areas, DBH-CA allometry was characterized by inter-site homogeneity and intra-site heterogeneity, whereas the reverse was observed for DBH-H allometry.

Abstract

Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which suggests that allometric scaling between stems and crowns may be tight, although insufficiently investigated to date. Here, we report the first broad-scale assessment of stem vs. crown scaling exponents using measurements of bole diameter (DBH), total height (H), and crown area (CA) made on 4148 trees belonging to 538 species in five biogeographic areas across the wet tropics. Allometries were fitted with power functions using ordinary least-squares regressions on log-transformed data. The inter-site variability and intra-site (sub-canopy vs. canopy trees) variability of the allometries were evaluated by comparing the scaling exponents. Our results indicated that, in contrast to both DBH-H and H-CA allometries, DBH-CA allometry shows no significant inter-site variation. This fairly invariant scaling calls for increased effort in documenting crown sizes as part of tree morphology. Stability in DBH-CA allometry, indeed, suggests that some universal constraints are sufficiently pervasive to restrict the exponent variation to a narrow range. In addition, our results point to inverse changes in the scaling exponent of the DBH-CA vs. DBH-H allometries when shifting from sub-canopy to canopy trees, suggesting a change in carbon allocation when a tree reaches direct light. These results pave the way for further advances in our understanding of niche partitioning in tree species, tropical forest dynamics, and to estimate AGB in tropical forests from remotely sensed images.
  相似文献   

17.
Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia sensu lato) have succumbed to the disease since the early 2000s (ca 1/3 of the pre-invasion population). In addition, numerous native shrub and tree species in the family are susceptible and  threatened in the Western Hemisphere. Genetic markers were used to test the hypothesis that the vector and pathogen entered North America as a single introduction. With a portion of the cytochrome oxidase I gene, a single X. glabratus haplotype was detected in the USA. Similarly, Amplified Fragment Length Polymorphisms indicated that 95% (54 of 57) of the isolates of R. lauricola that were examined were of a single clonal genotype; only minor variation was detected in three polymorphic isolates. Similar levels of disease developed after swamp bay (P. palustris) was inoculated with each of the four genotypes of R. lauricola. It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States.  相似文献   

18.
Stomatal conductance (g s) of mature trees exposed to elevated CO2 concentrations was examined in a diverse deciduous forest stand in NW Switzerland. Measurements of g s were carried out on upper canopy foliage before noon, over four growing seasons, including an exceptionally dry summer (2003). Across all species reductions in stomatal conductance were smaller than 25% most likely around 10%, with much variation among species and trees. Given the large heterogeneity in light conditions within a tree crown, this signal was not statistically significant, but the responses within species were surprisingly consistent throughout the study period. Except during a severe drought, stomatal conductance was always lower in trees of Carpinus betulus exposed to elevated CO2 compared to Carpinus trees in ambient air, but the difference was only statistically significant on 2 out of 15 days. In contrast, stomatal responses in Fagus sylvatica and Quercus petraea varied around zero with no consistent trend in relation to CO2 treatment. During the 2003 drought in the third treatment year, the CO2 effect became reversed in Carpinus, resulting in higher g s in trees exposed to elevated CO2 compared to control trees, most likely due to better water supply because of the previous soil water savings. This was supported by less negative predawn leaf water potential in CO2 enriched Carpinus trees, indicating an improved water status. These findings illustrate (1) smaller than expected CO2-effects on stomata of mature deciduous forest trees, and (2) the possibility of soil moisture feedback on canopy water relations under elevated CO2.  相似文献   

19.
Chloranthaceae were one of the first common lines during the early radiation of angiosperms, possibly reflecting adaptation to more open habitats. Phylogenetic analyses clarify the position of Cretaceous mesofossils in molecular trees of Recent taxa. Plants that produced Asteropollis pollen, with tepals adnate to a single carpel, are nested in crown group Chloranthaceae with Hedyosmum; Canrightiopsis, with three stamens and no perianth, is sister to Sarcandra and Chloranthus; and Canrightia is a stem relative that illustrates a still bisexual stage in floral reduction. Plants that produced Pennipollis pollen are related to Chloranthaceae and/or Ceratophyllum rather than monocots. Appomattoxia, which produced Tucanopollis pollen, has equivocal affinities, but Pseudoasterophyllites, with similar pollen and stems with reduced leaves, may be a link between Chloranthaceae and Ceratophyllum. These results imply that flowers became unisexual before losing the perianth, while bisexual flowers in Canrightiopsis, Sarcandra, and Chloranthus are secondarily derived from unisexual flowers.  相似文献   

20.
The population of earthworms has been studied in the main types of old-growth dark coniferous forests of Pechora-Ilych Nature Reserve (Komi Republic) that have not been subject to anthropogeniс impact for a long time. Ten species of earthworms have been identified. The greatest diversity (7 species), abundance, and biomass of earthworms has been revealed in the tall-grass fir–spruce forests. P. diplotetratheca had the greatest abundance. E. nordenskioldi nordenskioldi and E. atlavinyteae had the greatest biomass. The lowest species diversity (3 species), abundance, and biomass of earthworms have been found in the largefern, blueberry–green moss, and sphagnum–horsetail fir–spruce forests. The role of deadwood in maintaining the species diversity of Lumbricidae in dark coniferous forests has been demonstrated. The complexes of Lumbricidae have been considered in anthropogenically disturbed territories, where the following species with a habitat range to the south of the northern and middle taiga have been identified: L. rubellus, A. rosea, A. caliginosa caliginosa, and E. fetida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号