首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat.  相似文献   

2.
Dormant Bacillus subtilis spores can be induced to germinate by nutrients, as well as by nonmetabolizable chemicals, such as a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA). Nutrients bind receptors in the spore, and this binding triggers events in the spore core, including DPA excretion and rehydration, and also activates hydrolysis of the surrounding cortex through mechanisms that are largely unknown. As Ca(2+)-DPA does not require receptors to induce spore germination, we asked if this process utilizes other proteins, such as the putative cortex-lytic enzymes SleB and CwlJ, that are involved in nutrient-induced germination. We found that Ca(2+)-DPA triggers germination by first activating CwlJ-dependent cortex hydrolysis; this mechanism is different from nutrient-induced germination where cortex hydrolysis is not required for the early germination events in the spore core. Nevertheless, since nutrients can induce release of the spore's DPA before cortex hydrolysis, we examined if the DPA excreted from the core acts as a signal to activate CwlJ in the cortex. Indeed, endogenous DPA is required for nutrient-induced CwlJ activation and this requirement was partially remedied by exogenous Ca(2+)-DPA. Our findings thus define a mechanism for Ca(2+)-DPA-induced germination and also provide the first definitive evidence for a signaling pathway that activates cortex hydrolysis in response to nutrients.  相似文献   

3.
The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca(2+)-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in cotE spores in which the spore coat is aberrant. These findings indicate the following: (i) the reason decoated and cotE spores germinate poorly with dipicolinic acid is the absence of CwlJ from these spores; and (ii) CwlJ is located in the spore coat, presumably tightly associated with one or more other coat proteins.  相似文献   

4.
5.
Dormant Bacillus subtilis spores germinate in the presence of particular nutrients called germinants. The spores are thought to recognize germinants through receptor proteins encoded by the gerA family of operons, which includes gerA, gerB, and gerK. We sought to substantiate this putative function of the GerA family proteins by characterizing spore germination in a mutant strain that contained deletions at all known gerA-like loci. As expected, the mutant spores germinated very poorly in a variety of rich media. In contrast, they germinated like wild-type spores in a chemical germinant, a 1-1 chelate of Ca(2+) and dipicolinic acid (DPA). These observations showed that proteins encoded by gerA family members are required for nutrient-induced germination but not for chemical-triggered germination, supporting the hypothesis that the GerA family encodes receptors for nutrient germinants. Further characterization of Ca(2+)-DPA-induced germination showed that the effect of Ca(2+)-DPA on spore germination was saturated at 60 mM and had a K(m) of 30 mM. We also found that decoating spores abolished their ability to germinate in Ca(2+)-DPA but not in nutrient germinants, indicating that Ca(2+)-DPA and nutrient germinants probably act through parallel arms of the germination pathway.  相似文献   

6.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

7.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by hypochlorite and chlorine dioxide, and its resistance against them. METHODS AND RESULTS: Spores of B. subtilis treated with hypochlorite or chlorine dioxide did not accumulate damage to their DNA, as spores with or without the two major DNA protective alpha/beta-type small, acid soluble spore proteins exhibited similar sensitivity to these chemicals; these agents also did not cause spore mutagenesis and their efficacy in spore killing was not increased by the absence of a major DNA repair pathway. Spore killing by these two chemicals was greatly increased if spores were first chemically decoated or if spores carried a mutation in a gene encoding a protein essential for assembly of many spore coat proteins. Spores prepared at a higher temperature were also much more resistant to these agents. Neither hypochlorite nor chlorine dioxide treatment caused release of the spore core's large depot of dipicolinic acid (DPA), but hypochlorite- and chlorine dioxide-treated spores much more readily released DPA upon a subsequent normally sub-lethal heat treatment than did untreated spores. Hypochlorite-killed spores could not initiate the germination process with either nutrients or a 1 : 1 chelate of Ca2+-DPA, and these spores could not be recovered by lysozyme treatment. Chlorine dioxide-treated spores also did not germinate with Ca2+-DPA and could not be recovered by lysozyme treatment, but did germinate with nutrients. However, while germinated chlorine dioxide-killed spores released DPA and degraded their peptidoglycan cortex, they did not initiate metabolism and many of these germinated spores were dead as determined by a viability stain that discriminates live cells from dead ones on the basis of their permeability properties. CONCLUSIONS: Hypochlorite and chlorine dioxide do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents appears to be the spore coat. Spore killing by hypochlorite appears to render spores defective in germination, possibly because of severe damage to the spore's inner membrane. While chlorine dioxide-killed spores can undergo the initial steps in spore germination, these germinated spores can go no further in this process probably because of some type of membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of the killing of bacterial spores by hypochlorite and chlorine dioxide.  相似文献   

8.
The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of approximately 9 and a temperature optimum of 60 degrees C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl(2). Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca(2+) almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca(2+) and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca(2+)-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca(2+)-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.  相似文献   

9.
The spores of Bacillus subtilis show remarkable resistance to many environmental stresses, due in part to the presence of an outer proteinaceous structure known as the spore coat. GerQ is a spore coat protein essential for the presence of CwlJ, an enzyme involved in the hydrolysis of the cortex during spore germination, in the spore coat. Here we show that GerQ is cross-linked into higher-molecular-mass forms due in large part to a transglutaminase. GerQ is the only substrate for this transglutaminase identified to date. In addition, we show that cross-linking of GerQ into high-molecular-mass forms occurs only very late in sporulation, after mother cell lysis. These findings, as well as studies of GerQ cross-linking in mutant strains where spore coat assembly is perturbed, lead us to suggest that coat proteins must assemble first and that their cross-linking follows as a final step in the spore coat formation pathway.  相似文献   

10.
Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.  相似文献   

11.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to the general biological decontamination agents, Decon and Oxone. METHODS AND RESULTS: Spores of B. subtilis treated with Decon or Oxone did not accumulate DNA damage and were not mutagenized. Spore killing by these agents was increased if spores were decoated. Spores prepared at higher temperatures were more resistant to these agents, consistent with a major role for spore coats in this resistance. Neither Decon nor Oxone released the spore core's depot of dipicolinic acid (DPA), but Decon- and Oxone-treated spores more readily released DPA upon a subsequent normally sublethal heat treatment. Decon- and Oxone-killed spores initiated germination with dodecylamine more rapidly than untreated spores, but could not complete germination triggered by nutrients or Ca(2+)-DPA and did not degrade their peptidoglycan cortex. However, lysozyme treatment did not recover these spores. CONCLUSIONS: Decon and Oxone do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents is the spore coat. Spore killing by both agents renders spores defective in germination, possibly because of damage to the inner membrane of spore. SIGNIFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of the killing of bacterial spores by Decon and Oxone.  相似文献   

12.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

13.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

14.
Wang SL  Fan KQ  Yang X  Lin ZX  Xu XP  Yang KQ 《Journal of bacteriology》2008,190(11):4061-4068
Ca(2+) was reported to regulate spore germination and aerial hypha formation in streptomycetes; the underlying mechanism of this regulation is not known. cabC, a gene encoding an EF-hand calcium-binding protein, was disrupted or overexpressed in Streptomyces coelicolor M145. On R5- agar, the disruption of cabC resulted in denser aerial hyphae with more short branches, swollen hyphal tips, and early-germinating spores on the spore chain, while cabC overexpression significantly delayed development. Manipulation of the Ca(2+) concentration in R5- agar could reverse the phenotypes of cabC disruption or overexpression mutants and mimic mutant phenotypes with M145, suggesting that the mutant phenotypes were due to changes in the intracellular Ca(2+) concentration. CabC expression was strongly activated in aerial hyphae, as determined by Western blotting against CabC and confocal laser scanning microscopy detection of CabC::enhanced green fluorescent protein (EGFP). CabC::EGFP fusion proteins were evenly distributed in substrate mycelia, aerial mycelia, and spores. Taken together, these results demonstrate that CabC is involved in Ca(2+)-mediated regulation of spore germination and aerial hypha formation in S. coelicolor. CabC most likely acts as a Ca(2+) buffer and exerts its regulatory effects by controlling the intracellular Ca(2+) concentration.  相似文献   

15.
The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an epsilon-(gamma-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.  相似文献   

16.
The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores'' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes.  相似文献   

17.
A Bacillus subtilis strain with a base substitution in the ribosome-binding site of spoVAC was temperature sensitive (ts) in sporulation and spores prepared at the permissive temperature were ts in L-alanine-triggered germination, but not in germination with Ca2+-dipicolinic acid (DPA) or dodecylamine. Spores of a ts spo mutant with a missense mutation in the spoVAC coding region were not ts for germination with l-alanine, dodecylamine or Ca2+-DPA. These findings are discussed in light of the proposal that SpoVA proteins are involved not only in DPA uptake during sporulation, but also in DPA release during nutrient-mediated spore germination.  相似文献   

18.
The proteins encoded by the spoVA operon, including SpoVAD, are essential for the uptake of the 1:1 chelate of pyridine-2,6-dicarboxylic acid (DPA(2,6)) and Ca(2+) into developing spores of the bacterium Bacillus subtilis. The crystal structure of B. subtilis SpoVAD has been determined recently, and a structural homology search revealed that SpoVAD shares significant structural similarity but not sequence homology to a group of enzymes that bind to and/or act on small aromatic molecules. We find that molecular docking placed DPA(2,6) exclusively in a highly conserved potential substrate-binding pocket in SpoVAD that is similar to that in the structurally homologous enzymes. We further demonstrate that SpoVAD binds both DPA(2,6) and Ca(2+)-DPA(2,6) with a similar affinity, while exhibiting markedly weaker binding to other DPA isomers. Importantly, mutations of conserved amino acid residues in the putative DPA(2,6)-binding pocket in SpoVAD essentially abolish its DPA(2,6)-binding capacity. Moreover, replacement of the wild-type spoVAD gene in B. subtilis with any of these spoVAD gene variants effectively eliminated DPA(2,6) uptake into developing spores in sporulation, although the variant proteins were still located in the spore inner membrane. Our results provide direct evidence that SpoVA proteins, in particular SpoVAD, are directly involved in DPA(2,6) movement into developing B. subtilis spores.  相似文献   

19.
How do spores germinate?   总被引:3,自引:0,他引:3  
Spore germination, as defined as those events that result in the loss of the spore-specific properties, is an essentially biophysical process. It occurs without any need for new macromolecular synthesis, so the apparatus required is already present in the mature dormant spore. Germination in response to specific chemical nutrients requires specific receptor proteins, located at the inner membrane of the spore. After penetrating the outer layers of spore coat and cortex, germinant interacts with its receptor: one early consequence of this binding is the movement of monovalent cations from the spore core, followed by Ca2(+) and dipicolinic acid (DPA). In some species, an ion transport protein is also required for these early stages. Early events - including loss of heat resistance, ion movements and partial rehydration of the spore core - can occur without cortex hydrolysis, although the latter is required for complete core rehydration and colony formation from a spore. In Bacillus subtilis two crucial cortex lytic enzymes have been identified: one is CwlJ, which is DPA-responsive and is located at the cortex-coat junction. The second, SleB, is present both in outer layers and at the inner spore membrane, and is more resistant to wet heat than is CwlJ. Cortex hydrolysis leads to the complete rehydration of the spore core, and then enzyme activity within the spore protoplast resumes. We do not yet know what activates SleB activity in the spore, and neither do we have any information at all on how the spore coat is degraded.  相似文献   

20.
The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK. CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号