首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We determined whether increase in cold hardiness of Rhododendron cv. Catawbiense Boursault induced by water stress was correlated with changes in tissue water relations. Water content of the growing medium was either maintained near field capacity for the duration of the study or plants were subjected to drought episodes at different times between 15 July and 19 February. Watering during a drought episode was delayed until soil water content decreased below 0.4 m3 m−3 then watering was resumed at a level to maintain soil water content between 0.3 and 0.4 m3 m−3. Cold hardiness was evaluated in the laboratory with freeze tolerance tests on detached leaves. Water relations parameters were determined using pressure-volume analysis. Exposure to drought episodes increased cold hardiness during the cold acclimation stage in late summer and fall but not during the winter. When water-stressed plants were re-watered to field capacity, the previous gain in cold hardiness gradually disappeared. Water relations parameters correlating with seasonal changes of cold hardiness included dry matter content (r =−0.67). apoplastic water content (r =−0.60), and water potential at the turgor loss point (r = 0.40). Changes of cold hardiness in water-stressed plants in reference to well-watered plants were correlated with changes of all water relations parameters, except for osmotic potential at full turgor (r = 0.13). It is proposed that water stress reduced the hydration of cell walls, thereby increasing their rigidity. Increased rigidity of cell walls could result in a development of greater negative turgor pressures at subfreezing temperatures and therefore increased resistance to freeze dehydration.  相似文献   

2.
Mechanisms involved in cold hardiness of cocoons of the lumbricid earthworm Dendrobaena octaedra were elucidated by osmometric and calorimetric studies of water relations in cocoons exposed to subzero temperatures. Fully hydrated cocoons contained ca. 3 g water · g dry weight-1; about 15% of this water (0.5 g·g dry weight-1) was osmotically inactive or bound. The melting point of the cocoon fluids in fully hydrated cocoons was-0.20°C. Exposure to frozen surroundings initially resulted in supercooling of the cocoons dehydrated (as a result of the vapour pressure difference at a given temperature between supercooled water and ice) to an extent where the vapour pressure of water in the body fluids was in equilibrium with the surrounding ice. This resulted in a profound dehydration of the cocoons, even at mild freezing exposures, and a concomitant slight reduction in the amount of osmotically inactive water. At temperatures around-8°C, which cocoons readily survive, almost all (>97%) osmotically active water had been withdrawn from the cocoons. It is suggested that cold injuries in D. octaedra cocoons observed at still lower temperatures may be related to the degree of dehydration, and possibly to the loss of all osmotically active water. The study indicates that ice formation in the tissues is prevented by equilibrating the body fluid melting point with the exposure temperature. This winter survival mechanism does not conform with the freeze tolerance/freeze avoidance classification generally applied to cold-hardy poikilotherms. Implications of this cold hardiness mechanism for other semi-terrestrial invertebrates are discussed.Abbreviations DSC differential scanning calorimetry - dw dry weight - MP melting point(s) - II water potential - R universal gas constant - T absolute temperature - V specific volume of water  相似文献   

3.
4.
Specimens of the Arctic Collembolon Onychiurus arcticus were exposed to desiccation at several subzero temperatures over ice and at 0.5 °C over NaCl solutions. The effects of desiccation on water content (WC), body fluid melting point (MP), supercooling point (SCP) and survival were studied at several acclimation temperatures and relative humidities. Exposure to temperatures down to −19.5 °C caused a substantial and increasing dehydration. At the lowest exposure temperature unfrozen individuals lost 91.6% of the WC at full hydration but more than 80% of the individuals survived when rehydrated. Exposure at 0.5 °C to decreasing relative humidities (RH) from 100% to 91.3% caused increasing dehydration and increasing mortality. Survival of equally dehydrated individuals was higher at subzero temperatures than at 0.5 °C. Concurrent with the decline in WC a lowering of the MP was observed. Animals exposed to −3 °C and −6 °C over ice for 31 days had a MP of −3.8 and < −7.5 °C, respectively. Specimens from a laboratory culture had a mean SCP of −6.1 °C, and acclimation at 0 or −3 °C had little effect on SCPs. Exposure at −8.2 °C over ice for 8 days, however, caused the mean SCP to decline to −21.8 °C due to the severe dehydration of these individuals. Dehydration at 0.5 °C in 95.1 and 93.3% RH also caused a decline in SCPs to about −18 °C. Individuals that had been acclimated over ice at −12.4 °C or at lower temperatures apparently did not freeze at all when cooled to −30 °C, probably because all freezeable water had been lost. These results show that O. arcticus will inevitably undergo dehydration when exposed to subzero temperatures in its natural frozen habitat. Consequently, the MP and SCP of the Collembola are substantially lowered and in this way freezing is avoided. The increased cold hardiness by dehydration is similar to the protective dehydration mechanism described in earthworm cocoons and Arctic enchytraeids. Accepted: 5 January 1998  相似文献   

5.
Wang HS  Zhou CS  Guo W  Kang L 《Cryobiology》2006,53(2):206-217
Treatment of thermoperiods that simulate the patterns of natural occurrence is most efficient in enhancing cold hardiness. To examine the effects of different thermoperiods on cold hardiness of eggs in the migratory locust, Locusta migratoria (L.), the survival rates, cryoprotectant levels and three hsps expressions in mid-stage eggs (7-day-old) were measured after the eggs were subjected to three different thermoperiod regimes, : short (2 day), long (10 day), and nature-mimicking thermoperiodic acclimation. The thermoperiodic acclimations resulted in the highest egg survival rates in both the short and the long period acclimation groups in comparison with the groups treated with constant temperatures. The egg survival of nature-mimicking thermoperiod groups was significantly higher than those of constant temperature groups for the same acclimation duration. The survival rate of eggs under single daily thermoperiod was higher than that of multiple daily thermoperiods. The concentration of cryoprotectants (myo-inositol, trehalose, mannitol and sorbitol) and the expression levels of hsp20.5, hsp70, and hsp90 all increased in thermoperiodic acclimation eggs.  相似文献   

6.
Earthworm cocoons are mostly found in the uppermost soil layers and are therefore often exposed to low temperatures during winter. In the present study, cocoons of five taxa of earthworms were investigated for their tolerance to freezing, melting points of cocoon fluids and dehydration of cocoons when exposed to a frozen environment. Embryos of the taxa investigated were freeze intolerant. The melting points of fully hydrated cocoon fluids were high (above –0.3°C) and thermal hysteresis factors were absent. Exposure to a frozen environment caused the cocoons to dehydrate drastically and dehydrated cocoons showed significantly lower super-cooling points than fully hydrated cocoons, reducing the risk of freezing for dehydrated cocoons. It is proposed therefore that the cold-hardiness strategy of the earthworm cocoons is based on dehydration upon exposure to subzero temperatures in the frozen environment. Cocoons of three surface-dwelling taxa, Dendrobaena octaedra, Dendrodrilus rubidus tenuis and Dendrodrilus rubidus norvegicus had lower supercooling points and survived frost exposure better than cocoons of two deeper-dwelling taxa, Aporrectodea caliginosa and Allolobophora chlorotica. One of the investigated taxa, D. r. norvegicus, was collected from a cold alpine habitat. However, it was not more cold hardy than the closely related D. r. tenuis collected from a lowland temperate habitat. D. octaedra was the most cold hardy taxon, its cocoons being able to withstand –8°C for 3 months and –13.5°C for 2 weeks in frozen soil.Abbreviations dw dry weight - fw fresh weight - SCP supercooling point  相似文献   

7.
Abstract.  The present study investigates the influence of environmental moisture on cold hardiness of the migratory locust, Locusta migratoria . The water content of locust eggs kept in soil at 30 °C varies according to the moisture content of the substrate. In turn, it can significantly affect the supercooling point of locust eggs (range from −26 to −14.8 °C) and the mortality when exposed to subzero temperatures. Environmental moisture influences the supercooling capacity of eggs and their survival at low temperature. When locust eggs of the same water content are exposed to subzero temperatures under different soil moistures, their mortality varies between short-time exposure and long-time exposure at subzero temperatures. Given a short-time exposure, mortality in wet soil is lower than in dry soil due to the buffering effect of soil water against temperature change. The pattern of egg mortality is reversed after long-time exposure at low temperature, suggesting that inoculative freezing may be an important mortality factor. It is suggested that interactions between soil moisture and low temperature can influence the cold hardiness of locust eggs, and partial dehydration is beneficial to over-wintering eggs of the migratory locust.  相似文献   

8.
Wang HS  Kang L 《Cryobiology》2005,51(2):220-229
To examine the relationship between cooling rate and cold hardiness in eggs of the migratory locust, Locusta migratoria, the survival rates and cryoprotectant levels of three embryonic developmental stages were measured at different cooling rates (from 0.05 to 0.8 degrees C min(-1)) in acclimated and non-acclimated eggs. Egg survival rate increased with decreasing cooling rate. The concentration of cryoprotectants (myo-inositol, trehalose, mannitol, glycerol, and sorbitol) increased in non-acclimated eggs, but varied significantly in response to different cooling rates in acclimated eggs. The acclimation process (5 degrees C for 3 days) did not increase eggs resistance to quick cooling ("plunge" cooling and 0.8 degrees C min(-1)). Earlier stage embryos were much more sensitive than later stage embryos to the same cooling rates. Time spent at subzero temperatures also had a strong influence on egg survival.  相似文献   

9.
By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.  相似文献   

10.
The cold hardiness of two closely related weevil species, Exapion ulicis and E. lemovicinum was studied in relation to their life cycles. These two seed-eating weevils reproduce on Ulex plant species with different fruiting phenologies. E. ulicis lays eggs in spring and overwinters as an adult while E. lemovicinum lays eggs in autumn and overwinters as a larva. Adult weevils were collected in natural populations of Brittany (Western France) and characterized with morphological and molecular tools before experiments. We showed that both weevil species exhibited low supercooling points (SCPs) with mean seasonal values below −17 °C. Fresh mass, moisture content and sex were not correlated to supercooling ability. Weevils died upon freezing and the lower lethal temperatures (LLT) were within the range of SCP, indicating that both species are freezing intolerant. Comparison between species for SCP, LLT and survival to exposure at −8 °C in winter showed a higher cold resistance for E. ulicis than for E. lemovicinum. In addition, the seasonal evolution of cold hardiness differed depending on the species. These features suggest that response to cold of weevils is linked to their life cycles, and thus to the life history of their host plants.  相似文献   

11.
螺旋粉虱Aleurodicus dispersus是广泛分布于热带和亚热带地区的重要入侵害虫。为了揭示其在海南对低温的耐性,通过测定低温致死中温度、致死中时间分析各个虫态的耐寒性。低温致死中温度由低到高的顺序为3龄若虫、1龄若虫、卵、2龄若虫、成虫和4龄若虫,分别为5.33℃、5.43℃、7.38℃、7.96℃、10.69℃和13.75℃;在3℃低温下卵至4龄若虫的致死中时间从长到短的顺序为3.74 d(卵)、2.11 d(3龄)、1.74 d(2龄)、1.21 d(1龄)和1.16 d(4龄)。在3℃时螺旋粉虱成虫大量快速死亡,其在12℃时的致死中时间为1.02 d。螺旋粉虱卵对低温的忍受能力较强,成虫对低温的忍耐力最弱。低温暴露下的死亡率用于评价螺旋粉虱的耐寒性更有现实意义。  相似文献   

12.
The hemlock looper (Lambdina fiscellaria) is an important pest of eastern Canadian forests. The ongoing climate warming could modify the seasonal ecology of this univoltine species that lays eggs at the end of summer and overwinters at this stage. Indeed, the increase in frequency and intensity of extreme climatic events such as fall heat waves could interfere with the winter metabolism of the hemlock looper. Moreover, the host plant quality, which influences the quantity of insect energetic reserves, the geographic origin of populations and the conditions prevailing during the cold acclimation period, could cause various responses of this pest to climate warming. The main objective of this study is to determine the impact of these factors on hemlock looper winter biology. In October 2010, hemlock looper eggs initially collected from two geographic areas in the province of Québec, and from parents reared on two host plants, were exposed to fall heat waves of different intensities during 5 consecutive days. Supercooling points and cryoprotectant levels were measured on eggs on four different dates in 2010–2011 and survival rate was measured in April 2011. Our results show that hemlock looper eggs have a very low supercooling point and high levels of trehalose, glucose and mannitol in September and November. However, there is no clear relationship between the concentration of these compounds and the decrease in supercooling points. Contents in trehalose, glucose and mannitol were significantly influenced by fall heat waves and by the origin of the population. Winter survival of eggs from the temperate population was negatively affected by strong heat waves while the boreal population was not affected. This study suggests that the metabolism and winter survival of temperate hemlock looper populations in Québec will be more affected by fall heat waves that will increase in frequency due to climate change, than boreal populations.  相似文献   

13.
以来自11个省份的134个小麦品种为试验材料,于2009-2010年在石家庄种植,调查冻害情况;并利用分子标记鉴定VRN-1等位基因组成,以明确小麦品种春化VRN-1等位基因组成与耐寒性的关系。结果表明:小麦品种的耐寒性与其VRN-1等位基因组成、地理来源和耐旱性等因素有密切关系。当地理来源相同时,品种的耐寒性一般随着VRN-1等位基因控制的春化效应的增强而减弱;当VRN-1等位基因组成相同时,品种的耐寒性一般随着地理来源的纬度降低而减弱。本研究结果为小麦品种的耐寒性改良提供了重要参考。  相似文献   

14.
15.
The freezing process and supercooling ability in flower budsof 11 native Rhododendron species were examined with referenceto the cooling rate and cold hardiness by differential thermalanalysis. The freezing patterns of the excised whole buds variedwith the season: in autumn, buds froze as whole units, whilein winter, freezing was initiated in the scales and propagatedto each floret. The supercooling ability of florets was enhancedduring winter. The freezing patterns in winter buds were stronglyinfluenced by the cooling rate (1 to 30°C/hr). Althoughthe first exotherm in scales occurred at –5 to –10°Gand was rate-independent, the occurrence of several floret exothermsshifted considerably to lower subzero temperatures at slowerrates. The most reliable cooling rate for testing maximum supercoolingability was l°C/hr. The exotherm in florets of hardier speciesoccurred at –20 to –25°C and at –7 to–20°C for less hardy ones, and were well correlatedwith their killing temperatures. Water relations within budtissues in response to freezing are briefly discussed. (Received June 26, 1980; )  相似文献   

16.
The freezing process and supercooling ability in flower budsof 11 native Rhododendron species were examined with referenceto the cooling rate and cold hardiness by differential thermalanalysis. The freezing patterns of the excised whole buds variedwith the season: in autumn, buds froze as whole units, whilein winter, freezing was initiated in the scales and propagatedto each floret. The supercooling ability of florets was enhancedduring winter. The freezing patterns in winter buds were stronglyinfluenced by the cooling rate (1 to 30°C/hr). Althoughthe first exotherm in scales occurred at –5 to –10°Gand was rate-independent, the occurrence of several floret exothermsshifted considerably to lower subzero temperatures at slowerrates. The most reliable cooling rate for testing maximum supercoolingability was l°C/hr. The exotherm in florets of hardier speciesoccurred at –20 to –25°C and at –7 to–20°C for less hardy ones, and were well correlatedwith their killing temperatures. Water relations within budtissues in response to freezing are briefly discussed. (Received June 26, 1980; )  相似文献   

17.
提高植物抗寒性的机理研究进展   总被引:17,自引:0,他引:17  
徐呈祥 《生态学报》2012,32(24):7966-7980
低温胁迫是世界范围内影响植物产量和品质的主要非生物胁迫.植物抗寒生理生态研究是比较活跃和发展很快的领域.文章综述了提高植物抗寒性机理的研究进展.大量科学研究和生产实践表明,气象因素与植物自身因素是影响植物抗寒性的关键因素,前者主要是温度、光周期和水分,后者主要是植物的遗传学基础、生长时期、发育水平以及低温胁迫下细胞的抗氧化能力.保证植物抗寒基因充分表达对提高植物抗寒性有重要意义.植物抗寒性的遗传机制与调控主要通过5条路径实现:丰富多样的植物低温诱导蛋白,低温转录因子DREB/CBF可同时调控多个植物低温诱导基因的表达,DREB/CBF与辅助因子相互作用调控下游基因表达,Ca2+、ABA及蛋白质磷酸化上游调控低温诱导基因表达,以及不饱和脂肪酸酶基因的表达.基因工程改良植物抗寒性已获重要进展,但距产业化尚有许多开创性的工作要做,目前主要通过导入抗寒调控基因和抗寒功能基因而实现,后者主要是导入抗渗透胁迫相关基因、抗冻蛋白基因、脂肪酸去饱和代谢关键酶基因、SOD等抗氧化系统的基因以及与植物激素调节有关的基因.农林技术对提高植物抗寒性有重大实用价值,其中的不少技术蕴涵着深刻的科学机理,重点评述了抗寒育种、抗砧嫁接、抗寒锻炼、水肥耦合及化学诱导五大技术提高植物抗寒性的作用机理.展望了提高植物抗寒性的研究.  相似文献   

18.
The rice stem borer, Chilo suppressalis, is divided into at least two ecotypes in Japan, the Shonai ecotype (SN) which is distributed in the northern part of Japan, and the Saigoku ecotype (SG) which is distributed in the southwestern region. Cold hardiness is positively correlated with the level of glycerol in both ecotypes. To investigate whether ecological distribution affects glycerol accumulation and cold hardiness development in these two ecotypes, overwintering larvae of the SN and SG ecotypes were concurrently exposed to the Shonai district. Obvious differences in the progress of glycerol accumulation and cold hardiness development in SN and SG larvae were found in early winter in the Shonai district. The levels of glycerol content and cold hardiness were low in October and high in January in both ecotypes, but those levels were different within this period (November and December) between ecotypes; the levels in SN larvae quickly reached their maximum, whereas, in SG larvae levels increased slowly. Under controlled conditions, the effect of the period of acclimation at 10 degrees C and subsequent low-temperature (5 degrees C) exposure on glycerol accumulation was investigated. These results indicated that glycerol accumulation in SN was stimulated by the progression of diapause termination, whereas a higher cumulative effect on glycerol production in SG was found when diapause was in a deep state.  相似文献   

19.
张钢  王爱芳 《应用生态学报》2007,18(7):1610-1616
介绍了几种针叶树种抗寒性动态模型的研究发展概况、不同模型的优势和局限,以及今后的研究展望.在已建立的数学模型中,初期研究只考虑温度作为影响抗寒性的环境因子,引入了抗寒性固定水平概念;由于这类模型对抗寒性的预测存在明显误差,之后的研究假设抗寒性固定水平是温度和光周期加性影响的结果,并考虑了抗寒性年发育阶段对环境的响应.加性模型受到研究人员的重视,并对加性原理进行了实际检验.有研究表明,温度和光周期对欧洲赤松苗不同器官的影响不是累加的,而是存在交互作用.因此,抗寒性数学模型需要不断地发展和完善.  相似文献   

20.
Dynamic thermal time model of cold hardiness for dormant grapevine buds   总被引:1,自引:0,他引:1  

Background and Aims

Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. The development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes are described.

Methods

Iterative methods were used to optimize and evaluate model parameters by minimizing the root mean square error between observed and predicted bud hardiness, using up to 22 years of low-temperature exotherm data. Three grape cultivars were studied: Cabernet Sauvignon, Chardonnay (both V. vinifera) and Concord (V. labruscana). The model uses time steps of 1 d along with the measured daily mean air temperature to calculate the change in bud hardiness, which is then added to the hardiness from the previous day. Cultivar-dependent thermal time thresholds determine whether buds acclimate (gain hardiness) or deacclimate (lose hardiness).

Key Results

The parameterized model predicted bud hardiness for Cabernet Sauvignon and Chardonnay with an r2 = 0·89 and for Concord with an r2 = 0·82. Thermal time thresholds and (de-)acclimation rates changed between the early and late dormant season and were cultivar dependent but independent of each other. The timing of these changes was also unique for each cultivar. Concord achieved the greatest mid-winter hardiness but had the highest deacclimation rate, which resulted in rapid loss of hardiness in spring. Cabernet Sauvignon was least hardy, yet maintained its hardiness latest as a result of late transition to eco-dormancy, a high threshold temperature required to induce deacclimation and a low deacclimation rate.

Conclusions

A robust model of grapevine bud cold hardiness was developed that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model parameters that produce the best fit also permit insight into dynamic differences in hardiness among genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号