首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During antibiotic treatment, antibiotic concentration gradients develop. Little is know regarding the effects of antibiotic gradients on populations of nonresistant bacteria. Using a microfluidic device, we show that high-density motile Escherichia coli populations composed of nonresistant bacteria can, unexpectedly, colonize environments where a lethal concentration of the antibiotic kanamycin is present. Colonizing bacteria establish an adaptively resistant population, which remains viable for over 24 h while exposed to the antibiotic. Quantitative analysis of multiple colonization events shows that collectively swimming bacteria need to exceed a critical population density in order to successfully colonize the antibiotic landscape. After colonization, bacteria are not dormant but show both growth and swimming motility under antibiotic stress. Our results highlight the importance of motility and population density in facilitating adaptive resistance, and indicate that adaptive resistance may be a first step to the emergence of genetically encoded resistance in landscapes of antibiotic gradients.  相似文献   

2.
We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 microm s(-1) as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 microm s(-1)) and a highly motile strain (>45 microm s(-1)) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 microm(3). Grazing mortality was lowest for cells of >0.5 microm(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (< or =0.1 microm(3), >50 microm s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing.  相似文献   

3.
Motile eukaryotic cells, such as leukocytes, cancer cells, and amoeba, typically move inside the narrow interstitial spacings of tissue or soil. While most of our knowledge of actin-driven eukaryotic motility was obtained from cells that move on planar open surfaces, recent work has demonstrated that confinement can lead to strongly altered motile behavior. Here, we report experimental evidence that motile amoeboid cells undergo a spontaneous symmetry breaking in confined interstitial spaces. Inside narrow channels, the cells switch to a highly persistent, unidirectional mode of motion, moving at a constant speed along the channel. They remain in contact with the two opposing channel side walls and alternate protrusions of their leading edge near each wall. Their actin cytoskeleton exhibits a characteristic arrangement that is dominated by dense, stationary actin foci at the side walls, in conjunction with less dense dynamic regions at the leading edge. Our experimental findings can be explained based on an excitable network model that accounts for the confinement-induced symmetry breaking and correctly recovers the spatio-temporal pattern of protrusions at the leading edge. Since motile cells typically live in the narrow interstitial spacings of tissue or soil, we expect that the geometry-driven polarity we report here plays an important role for movement of cells in their natural environment.  相似文献   

4.
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.  相似文献   

5.
The effects of ionizing radiation on bacteria are generally evaluated from the dose-dependent survival ratio, which is determined by colony-forming ability and mutation rate. The mutagenic damage to cellular DNA induced by radiation has been extensively investigated; however, the effects of irradiation on the cellular machinery in situ remain unclear. In the present work, we irradiated Escherichia coli cells in liquid media with gamma rays from 60Co (in doses up to 8 kGy). The swimming speeds of the cells were measured using a microscope. We found that the swimming speed was unaltered in cells irradiated with a lethal dose of gamma rays. However, the fraction of motile cells decreased in a dose-dependent manner. Similar results were observed when protein synthesis was inhibited by treatment with kanamycin. Evaluation of bacterial swimming speed and the motile fraction after irradiation revealed that some E. coli cells without the potential of cell growth and division remained motile for several hours after irradiation.  相似文献   

6.
Biotic factors that affect phytoplankton physiology and behavior are not well characterized but probably play a crucial role in regulating their population dynamics in nature. We document evidence that some marine bacteria can decrease the swimming speed of motile phytoplankton through the release of putative protease(s). Using the dinoflagellate Lingulodinium polyedrum (F. Stein) J. D. Dodge as a model system, we showed that the motility‐reducing components of bacterial‐algal cocultures were mostly heat labile, were of high molecular weight (>50 kDa), and could be partially neutralized by incubations with protease inhibitors. We further showed that additions of the purified protease pronase E decreased dinoflagellate swimming speed in a concentration‐dependent manner. We propose that motility can be used as a marker for dinoflagellate stress or general unhealthy status due to proteolytic bacteria, among other factors.  相似文献   

7.
Swarming represents a special case of bacterial behavior where motile bacteria migrate rapidly and collectively on surfaces. Swarming and swimming motility of bacteria has been studied well for rigid, self-propelled rods. In this study we report a strain of Vibrio alginolyticus, a species that exhibits similar collective motility but a fundamentally different cell morphology with highly flexible snake-like swarming cells. Investigating swarming dynamics requires high-resolution imaging of single cells with coverage over a large area: thousands of square microns. Researchers previously have employed various methods of motion analysis but largely for rod-like bacteria. We employ temporal variance analysis of a short time-lapse microscopic image series to capture the motion dynamics of swarming Vibrio alginolyticus at cellular resolution over hundreds of microns. Temporal variance is a simple and broadly applicable method for analyzing bacterial swarming behavior in two and three dimensions with both high-resolution and wide-spatial coverage. This study provides detailed insights into the swarming architecture and dynamics of Vibrio alginolyticus isolate B522 on carrageenan agar that may lay the foundation for swarming studies of snake-like, nonrod-shaped motile cell types.  相似文献   

8.
Abstract. To study the movement of human sperm, we have developed a microflow cell by miniaturizing our design for a preparative fractionation flow column. The microflow cell enabled us to view the movement of sperm over periods as long as 2 min. Sequential steps of filming, editing, and analysis revealed that the curved swimming patterns of sperm swimming in stagnant fluid become nearly straight tracks when the flow velocity is increased. However, the net swimming speed remained unchanged. Motile sperm accumulated near solid wall surfaces surrounding the fluid and oriented against the direction of the current; the velocity gradient was steepest in these regions. A laminar-flow preparative column separated motile sperm from dead sperm by carrying the nonmotile sperm and debris with the stream while leaving the motile sperm near the surrounding walls.  相似文献   

9.
To study the movement of human sperm, we have developed a microflow cell by miniaturizing our design for a preparative fractionation flow column. The microflow cell enabled us to view the movement of sperm over periods as long as 2 min. Sequential steps of filming, editing, and analysis revealed that the curved swimming patterns of sperm swimming in stagnant fluid become nearly straight tracks when the flow velocity is increased. However, the net swimming speed remained unchanged. Motile sperm accumulated near solid wall surfaces surrounding the fluid and oriented against the direction of the current; the velocity gradient was steepest in these regions. A laminar-flow preparative column separated motile sperm from dead sperm by carrying the nonmotile sperm and debris with the stream while leaving the motile sperm near the surrounding walls.  相似文献   

10.
In the course of a study on the bacterial degradation of plant cell wall polysaccharides, we observed that growing cells of motile cellulolytic bacteria accumulated, without attachment, near cellulose fibers present in the cultures. Because it seemed likely that the accumulation was due to chemotactic behavior, we investigated the chemotactic responses of one of the above-mentioned bacteria (Cellulomonas gelida ATCC 488). We studied primarily the responses toward cellobiose, which is the major product of cellulose hydrolysis by microorganisms, and toward hemicellulose hydrolysis products. We found that cellobiose, cellotriose, D-glucose, xylobiose, and D-xylose, as well as other sugars that are hemicellulose components, served as chemoattractants for C. gelida, as determined by a modification of Adler's capillary assay. Competition and inducibility experiments indicated that C. gelida possesses at least two types of separately regulated cellobiose chemoreceptors (Cb1 and cellobiose, cellotriose, xylobiose, and D-glucose, and it is constitutively synthesized. The presence in C. gelida of a constitutive response toward cellobiose and of at least two distinct cellobiose chemoreceptors has implications for the survival of this cellulolytic bacterium in nature. A possible mechanism for cellobiose-mediated bacterial chemotaxis toward cellulose is proposed. We suggest that, in natural environments, motile cellulolytic bacteria migrate toward plant materials that contain cellulose and hemicellulose by swimming up cellobiose concentration gradients and/or concentration gradients of other sugars (e.g., xylobiose, D-xylose, and D-glucose) formed by enzymatic hydrolysis of plant cell wall polysaccharides.  相似文献   

11.
A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature.  相似文献   

12.
Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel.  相似文献   

13.
High Motility Reduces Grazing Mortality of Planktonic Bacteria   总被引:5,自引:1,他引:4       下载免费PDF全文
We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 μm s−1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 μm s−1) and a highly motile strain (>45 μm s−1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 μm3. Grazing mortality was lowest for cells of >0.5 μm3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (≤0.1 μm3, >50 μm s−1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing.  相似文献   

14.
Ion selectivity of the Vibrio alginolyticus flagellar motor.   总被引:2,自引:2,他引:0       下载免费PDF全文
J Z Liu  M Dapice    S Khan 《Journal of bacteriology》1990,172(9):5236-5244
The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight.  相似文献   

15.
Synthetic nanoparticles and other stiff objects injected into a blood vessel filled with red blood cells are known to marginate toward the vessel walls. By means of hydrodynamic lattice-Boltzmann simulations, we show that active particles can strongly accelerate their margination by moving against the flow direction: particles located initially in the channel center migrate much faster to their final position near the wall than in the nonactive case. We explain our findings by an enhanced rate of collisions between the stiff particles and the deformable red blood cells. Our results imply that a significantly faster margination can be achieved either technically by the application of an external magnetic field (if the particles are magnetic) or biologically by self-propulsion (if the particles are, e.g., swimming bacteria).  相似文献   

16.
A common feature of walled organisms is their exposure to osmotic forces that challenge the mechanical integrity of cells while driving elongation. Most bacteria rely on their cell wall to bear osmotic stress and determine cell shape. Wall thickness can vary greatly among species, with Gram-positive bacteria having a thicker wall than Gram-negative bacteria. How wall dimensions and mechanical properties are regulated and how they affect growth have not yet been elucidated. To investigate the regulation of wall thickness in the rod-shaped Gram-positive bacterium Bacillus subtilis, we analyzed exponentially growing cells in different media. Using transmission electron and epifluorescence microscopy, we found that wall thickness and strain were maintained even between media that yielded a threefold change in growth rate. To probe mechanisms of elongation, we developed a biophysical model of the Gram-positive wall that balances the mechanical effects of synthesis of new material and removal of old material through hydrolysis. Our results suggest that cells can vary their growth rate without changing wall thickness or strain by maintaining a constant ratio of synthesis and hydrolysis rates. Our model also indicates that steady growth requires wall turnover on the same timescale as elongation, which can be driven primarily by hydrolysis rather than insertion. This perspective of turnover-driven elongation provides mechanistic insight into previous experiments involving mutants whose growth rate was accelerated by the addition of lysozyme or autolysin. Our approach provides a general framework for deconstructing shape maintenance in cells with thick walls by integrating wall mechanics with the kinetics and regulation of synthesis and turnover.  相似文献   

17.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

18.
Cell wall preparations from primary bean leaves were found to inhibit tumor initiation by Agrobacterium tumefaciens strain B6 when inoculated with the bacteria on bean leaves. Membrane fractions from these same leaves were noninhibitory. The cell walls were effective when applied prior to or with bacteria, but application of cell walls about 15 minutes after bacteria did not affect the number of tumors initiated. Much of the inhibitory activity of the plant cell walls was eliminated by pretreatment with dead site-attaching bacteria or with lipopolysaccharide from these bacteria. Cells and lipopolysaccharide from non-site-attaching agrobacteria had no effect on the activity of the plant cell walls. About 30% inhibition of tumor initiation was obtained with plant cell walls at 50 μg/ml dry weight, and at 10 mg/ml dry weight about 70% inhibition was typical. Both early and late appearing tumors were affected by the cell walls, indicating that they do not exclusively affect tumors arising from either small or large wounds. These data show that plant cell walls but not membranes contain surfaces to which A. tumefaciens adheres and these exhibit the specificity typical of the host site to which virulent agrobacteria must attach to induce tumors. It is concluded that some portion of wound-exposed plant cell wall constitutes the host adherence site in Agrobacterium infections.  相似文献   

19.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

20.
Simple models are used to calculate the inelastic light scattering spectrum of motile bacteria when wiggling motions are included in addition to translational displacement. Computations of spectra lead to the conclusion that nontranslational motions can be neglected when swimming speeds are deduced from light-scattering data for normal vigorously motile strains. On the other hand, for slowly translating bacteria, or for strains exhibiting noticeable wiggling motion when viewed in a microscope, additional spectral components may be significant. Such components are best distinguished when measurements are made at small and intermediate scattering angles; at large angles the spectra have approximately the same scaling properties (functionals of Qt, Q being the Bragg wave vector) as those associated with simple translational motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号