首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrodynamic interactions between two swimming bacteria   总被引:1,自引:0,他引:1  
This article evaluates the hydrodynamic interactions between two swimming bacteria precisely. We assume that each bacterium is force free and torque free, with a Stokes flow field around it. The geometry of each bacterium is modeled as a spherical or spheroidal body with a single helical flagellum. The movements of two interacting bacteria in an infinite fluid otherwise at rest are computed using a boundary element method, and the trajectories of the two interacting bacteria and the stresslet are investigated. The results show that as the two bacteria approach each other, they change their orientations considerably in the near field. The bacteria always avoided each other; no stable pairwise swimming motion was observed in this study. The effects of the hydrodynamic interactions between two bacteria on the rheology and diffusivity of a semidilute bacterial suspension are discussed.  相似文献   

2.
Origins of individual swimming behavior in bacteria.   总被引:8,自引:0,他引:8       下载免费PDF全文
Cells in a cloned population of coliform bacteria exhibit a wide range of swimming behaviors--a form of non-genetic individuality. We used computer models to examine the proposition that these variations are due to differences in the number of chemotaxis signaling molecules from one cell to the next. Simulations were run in which the concentrations of seven gene products in the chemotaxis pathway were changed either deterministically or stochastically, with the changes derived from independent normal distributions. Computer models with two adaptation mechanisms were compared with experimental results from observations on individuals drawn from genetically identical populations. The range of swimming behavior predicted for cells with a standard deviation of protein copy number per cell of 10% of the mean was found to match closely the experimental range of the wild-type population. We also make predictions for the swimming behaviors of mutant strains lacking the adaptational mechanism that can be tested experimentally.  相似文献   

3.
Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.  相似文献   

4.
S ly , L.I. & H argreaves , M.H. 1984. Two unusual budding bacteria isolated from a swimming pool. Journal of Applied Bacteriology 56 , 479–486.
Two unusual strains of budding bacteria were isolated on a Millipore Pseudomonas Count Water Tester during routine monitoring of Pseudomonas aeruginosa counts in a swimming pool. The first isolate has been identified as Blastobacter sp. It was a yellow-pigmented, Gram negative rod-shaped organism with a polar holdfast by which it attached to solid surfaces or other cells to form rosettes. The cells reproduced by asymmetric division or budding at the free pole of the cell, producing motile daughter cells with a single polar flagellum. The second isolate, which has not yet been identified, was a red-pigmented, Gram negative rod-shaped organism which produced one or more buds at each pole of the cell. Cell division appears to occur by both binary fission and by budding. Both organisms were strict aerobes, catalase and oxidase positive and did not produce acid from glucose in Hugh and Leifson medium.  相似文献   

5.
6.
Two unusual budding bacteria isolated from a swimming pool   总被引:2,自引:0,他引:2  
Two unusual strains of budding bacteria were isolated on a Millipore Pseudomonas Count Water Tester during routine monitoring of Pseudomonas aeruginosa counts in a swimming pool. The first isolate has been identified as Blastobacter sp. It was a yellow-pigmented, Gram negative rod-shaped organism with a polar holdfast by which it attached to solid surfaces or other cells to form rosettes. The cells reproduced by asymmetric division or budding at the free pole of the cell, producing motile daughter cells with a single polar flagellum. The second isolate, which has not yet been identified, was a red-pigmented, Gram negative rod-shaped organism which produced one or more buds at each pole of the cell. Cell division appears to occur by both binary fission and by budding. Both organisms were strict aerobes, catalase and oxidase positive and did not produce acid from glucose in Hugh and Leifson medium.  相似文献   

7.
Flagellar propulsion of swimming Escherichia coli produces circling clockwise motions near planar solid surfaces. Counterclockwise motion was first reported near air-TN medium interfaces, showing that slip at the interface is a key parameter of bacterial swimming.  相似文献   

8.
A spore-based biosensor for detecting low levels of bacteria in real-time has been recently developed. The system (termed LEXSAS, label-free exponential signal-amplification system) exploits spore's ability to produce fluorescence when sensing neighboring bacterial cells. We studied the LEXSAS as a possible approach for identifying bacterially contaminated platelet concentrates prior to transfusion because the system offers rapid analysis, high sensitivity, and low cost. If successful, this approach could reduce the risk of morbidity and mortality from transfusion-related bacteremia and sepsis. In this study, we used the LEXSAS for detecting bacteria in platelet concentrates spiked with Bacillus cereus, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, or Streptococcus pyogenes. Bacteria were separated from platelets using a 2-min procedure based on bacterial resistance to detergents and osmotic shock. The results indicate that the LEXSAS could be used to design a practical biosensor for identifying bacterially contaminated platelets in real-time.  相似文献   

9.
The singly flagellated bacterium, Vibrio alginolyticus, moves forward and backward by alternating the rotational direction of its flagellum. The bacterium has been observed retracing a previous path almost exactly and swimming in a zigzag pattern. In the presence of a boundary, however, the motion changes significantly, to something closer to a circular trajectory. Additionally, when the cell swims close to a wall, the forward and backward speeds differ noticeably. This study details a boundary element model for the motion of a bacterium swimming near a rigid boundary and the results of numerical analyses conducted using this model. The results reveal that bacterium motion is apparently influenced by pitch angle, i.e., the angle between the boundary and the swimming direction, and that forward motion is more stable than backward motion with respect to pitching of the bacterium. From these results, a set of diagrammatic representations have been created that explain the observed asymmetry in trajectory and speed between the forward and backward motions. For forward motion, a cell moving parallel to the boundary will maintain this trajectory. However, for backward motion, the resulting trajectory depends upon whether the bacterium is approaching or departing the boundary. Fluid-dynamic interactions between the flagellum and the boundary vary with cell orientation and cause peculiarities in the resulting trajectories.  相似文献   

10.
Cell wall analysis of oral filamentous bacteria   总被引:3,自引:0,他引:3  
  相似文献   

11.
During antibiotic treatment, antibiotic concentration gradients develop. Little is know regarding the effects of antibiotic gradients on populations of nonresistant bacteria. Using a microfluidic device, we show that high-density motile Escherichia coli populations composed of nonresistant bacteria can, unexpectedly, colonize environments where a lethal concentration of the antibiotic kanamycin is present. Colonizing bacteria establish an adaptively resistant population, which remains viable for over 24 h while exposed to the antibiotic. Quantitative analysis of multiple colonization events shows that collectively swimming bacteria need to exceed a critical population density in order to successfully colonize the antibiotic landscape. After colonization, bacteria are not dormant but show both growth and swimming motility under antibiotic stress. Our results highlight the importance of motility and population density in facilitating adaptive resistance, and indicate that adaptive resistance may be a first step to the emergence of genetically encoded resistance in landscapes of antibiotic gradients.  相似文献   

12.
The motion of small bacteria consists of two phases: relatively long runs alternate with intermittent stops, back-ups, or tumbles, depending on the species. In polar monotrichous bacteria, the flagellum is anchored at the cell pole inherited from the parent generation (old pole) and is surrounded by a chemoreceptor cluster. During forward swimming, the leading pole is always the pole recently formed in cell division (new pole). The flagella of the peritrichous bacterium Escherichia coli often form a bundle behind the old pole. Its cell orientation and receptor positioning during runs generally mimic that of monotrichous bacteria. When encountering a solid surface, peritrichous bacteria exhibit a circular motion with the leading pole dipping downward. Some polar monotrichous bacteria also perform circular motion near solid boundaries, but during back-ups. In this case, the leading pole points upward. Very little is known about behavior near milieu-air interfaces. Biophysical simulations have revealed some of the mechanisms underlying these phenomena, but leave many questions unanswered. Combining biophysics with molecular techniques will certainly advance our understanding of bacterial locomotion.  相似文献   

13.
Turnover of the cell wall of Gram-positive bacteria   总被引:48,自引:0,他引:48  
  相似文献   

14.
《Biophysical journal》2022,121(18):3435-3444
We study the chemotaxis of a population of genetically identical swimming bacteria undergoing run and tumble dynamics driven by stochastic switching between clockwise and counterclockwise rotation of the flagellar rotary system, where the steady-state rate of the switching changes in different environments. Understanding chemotaxis quantitatively requires that one links the measured steady-state switching rates of the rotary system, as well as the directional changes of individual swimming bacteria in a gradient of chemoattractant/repellant, to the efficiency of a population of bacteria in moving up/down the gradient. Here we achieve this by using a probabilistic model, parametrized with our experimental data, and show that the response of a population to the gradient is complex. We find the changes to the steady-state switching rate in the absence of gradients affect the average speed of the swimming bacterial population response as well as the width of the distribution. Both must be taken into account when optimizing the overall response of the population in complex environments.  相似文献   

15.
Toxic properties of the cell wall of gram-positive bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The biological activity of Odontomyces viscosus, which has been reported to cause periodontal disease in hamsters, was examined. The microorganism was cultured anaerobically in Brain Heart Infusion broth, and the cells were harvested. The washed cells were injected intradermally into the abdomen of rabbits. After 72 hr, a well-defined, firm, raised nodule (about 1.0 by 1.5 cm) with an erythematous border was seen at the injection site. Suspensions of cell wall and cytoplasmic material were injected intradermally, and the lesions appeared only at the site of cell wall injection. The cell walls, which were then treated with trypsin, pepsin, and ribonuclease, again produced the characteristic lesion. These nodular dermal lesions persisted for a minimal time of 10 days. The enzymatically treated cell walls were then hydrolyzed with 1 n HCl, and such hydrolysis up to 1 hr failed to alter the toxic activity of the cell walls. Similar dermal nodular lesions were obtained by injection of enzymatically treated cell walls of strains of Staphylococcus aureus, Streptococcus groups B, C, E, F, K, Lactobacillus casei, and Actinomyces israelii. Treatment with hot and cold trichloroacetic acid solutions and proteolytic enzymes, or with formamide, yielded insoluble fractions which produced the characteristic nodular lesions. The size of the lesion resulting from injection of these fractions was proportional to the amount of the injected material. The active fraction, which does not appear susceptible to hydrolysis by lysozyme, is thought to be cell wall mucopeptide. Histological studies showed skin abscesses due to the toxic reaction; however, in addition to the acute inflammatory reaction, there was local eosinophilia.  相似文献   

16.
17.
18.
A computer model of protein aggregation competing with productive folding is proposed. Our model adapts techniques from lattice Monte Carlo studies of protein folding to the problem of aggregation. However, rather than starting with a single string of residues, we allow independently folding strings to undergo collisions and consider their interactions in different orientations. We first present some background into the nature and significance of protein aggregation and the use of lattice Monte Carlo simulations in understanding other aspects of protein folding. The results of a series of simulation experiments involving simple versions of the model illustrate the importance of considering aggregation in simulations of protein folding and provide some preliminary understanding of the characteristics of the model. Finally, we discuss the value of the model in general and of our particular design decisions and experiments. We conclude that computer simulation techniques developed to study protein folding can provide insights into protein aggregation, and that a better understanding of aggregation may in turn provide new insights into and constraints on the more general protein folding problem.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号