首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Annotations of gene structures and regulatory elements can inform genome-wide association studies (GWASs). However, choosing the relevant annotations for interpreting an association study of a given trait remains challenging. I describe a statistical model that uses association statistics computed across the genome to identify classes of genomic elements that are enriched with or depleted of loci influencing a trait. The model naturally incorporates multiple types of annotations. I applied the model to GWASs of 18 human traits, including red blood cell traits, platelet traits, glucose levels, lipid levels, height, body mass index, and Crohn disease. For each trait, I used the model to evaluate the relevance of 450 different genomic annotations, including protein-coding genes, enhancers, and DNase-I hypersensitive sites in over 100 tissues and cell lines. The fraction of phenotype-associated SNPs influencing protein sequence ranged from around 2% (for platelet volume) up to around 20% (for low-density lipoprotein cholesterol), repressed chromatin was significantly depleted for SNPs associated with several traits, and cell-type-specific DNase-I hypersensitive sites were enriched with SNPs associated with several traits (for example, the spleen in platelet volume). Finally, reweighting each GWAS by using information from functional genomics increased the number of loci with high-confidence associations by around 5%.  相似文献   

3.
More than a decade of genome-wide association studies (GWASs) have identified genetic risk variants that are significantly associated with complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific gene expression measurements from single-cell RNA sequencing (scRNA-seq). We derive powerful gene-level test statistics for common and rare variants, separately and jointly, and adopt generalized least squares to prioritize trait-relevant cell types while accounting for the correlation structures both within and between genes. Using enrichment of loci associated with four lipid traits in the liver and enrichment of loci associated with three neurological disorders in the brain as ground truths, we show that EPIC outperforms existing methods. We apply our framework to multiple scRNA-seq datasets from different platforms and identify cell types underlying type 2 diabetes and schizophrenia. The enrichment is replicated using independent GWAS and scRNA-seq datasets and further validated using PubMed search and existing bulk case-control testing results.  相似文献   

4.
Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but the gene regulatory programs driving responses to glucocorticoid signaling in islets and the contribution of these programs to diabetes risk are unknown. In this study we used ATAC-seq and RNA-seq to map chromatin accessibility and gene expression from eleven primary human islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple doses and durations. We identified thousands of accessible chromatin sites and genes with significant changes in activity in response to glucocorticoids. Chromatin sites up-regulated in glucocorticoid signaling were prominently enriched for glucocorticoid receptor binding sites and up-regulated genes were enriched for ion transport and lipid metabolism, whereas down-regulated chromatin sites and genes were enriched for inflammatory, stress response and proliferative processes. Genetic variants associated with glucose levels and T2D risk were enriched in glucocorticoid-responsive chromatin sites, including fine-mapped variants at 51 known signals. Among fine-mapped variants in glucocorticoid-responsive chromatin, a likely casual variant at the 2p21 locus had glucocorticoid-dependent allelic effects on beta cell enhancer activity and affected SIX2 and SIX3 expression. Our results provide a comprehensive map of islet regulatory programs in response to glucocorticoids through which we uncover a role for islet glucocorticoid signaling in mediating genetic risk of T2D.  相似文献   

5.
6.
7.
8.
9.
《Genomics》2021,113(5):3325-3336
Carcass merits are widely considered as economically important traits affecting beef production in the beef cattle industry. However, the genetic basis of carcass traits remains to be well understood. Here, we applied multiple methods, including the Composite of Likelihood Ratio (CLR) and Genome-wide Association Study (GWAS), to explore the selection signatures and candidate variants affecting carcass traits. We identified 11,600 selected regions overlapping with 2214 candidate genes, and most of those were enriched in binding and gene regulation. Notably, we identified 66 and 110 potential variants significantly associated with carcass traits using single-trait and multi-traits analyses, respectively. By integrating selection signatures with single and multi-traits associations, we identified 12 and 27 putative genes, respectively. Several highly conserved missense variants were identified in OR5M13D, NCAPG, and TEX2. Our study supported polygenic genetic architecture of carcass traits and provided novel insights into the genetic basis of complex traits in beef cattle.  相似文献   

10.
11.
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 is a useful model system to study cell-type-specific gene expression and chromatin structure. Activation of the serpin locus can be induced in vitro by transferring human chromosome 14 from non-expressing to expressing cells. Serpin gene activation in expressing cells is correlated with locus-wide alterations in chromatin structure, including the de novo formation of 17 expression-associated DNase I-hypersensitive sites (DHSs). In this study, we investigated histone acetylation throughout the proximal serpin subcluster. We report that gene activation is correlated with high levels of histone H3 and H4 acetylation at serpin gene promoters and other regulatory regions. However, the locus is not uniformly hyperacetylated, as there are regions of hypoacetylation between genes. Furthermore, genetic tests indicate that locus-wide controls regulate both gene expression and chromatin structure. For example, deletion of a previously identified serpin locus control region (LCR) upstream of the proximal subcluster reduces both gene expression and histone acetylation throughout the ~130 kb region. A similar down regulation phenotype is displayed by transactivator-deficient cell variants, but this phenotype can be rescued by transfecting the cells with expression cassettes encoding hepatocyte nuclear factor-1α (HNF-1α) or HNF-4. Taken together, these results suggest that histone acetylation depends on interactions between the HNF-1α/HNF-4 signaling cascade and the serpin LCR.  相似文献   

12.
Li  Wei Vivian  Razaee  Zahra S.  Li  Jingyi Jessica 《BMC genomics》2016,17(1):109-125
Background

The dynamics of epigenomic marks in their relevant chromatin states regulate distinct gene expression patterns, biological functions and phenotypic variations in biological processes. The availability of high-throughput epigenomic data generated by next-generation sequencing technologies allows a data-driven approach to evaluate the similarities and differences of diverse tissue and cell types in terms of epigenomic features. While ChromImpute has allowed for the imputation of large-scale epigenomic information to yield more robust data to capture meaningful relationships between biological samples, widely used methods such as hierarchical clustering and correlation analysis cannot adequately utilize epigenomic data to accurately reveal the distinction and grouping of different tissue and cell types.

Methods

We utilize a three-step testing procedure–ANOVA, t test and overlap test to identify tissue/cell-type- associated enhancers and promoters and to calculate a newly defined Epigenomic Overlap Measure (EPOM). EPOM results in a clear correspondence map of biological samples from different tissue and cell types through comparison of epigenomic marks evaluated in their relevant chromatin states.

Results

Correspondence maps by EPOM show strong capability in distinguishing and grouping different tissue and cell types and reveal biologically meaningful similarities between Heart and Muscle, Blood & T-cell and HSC & B-cell, Brain and Neurosphere, etc. The gene ontology enrichment analysis both supports and explains the discoveries made by EPOM and suggests that the associated enhancers and promoters demonstrate distinguishable functions across tissue and cell types. Moreover, the tissue/cell-type-associated enhancers and promoters show enrichment in the disease-related SNPs that are also associated with the corresponding tissue or cell types. This agreement suggests the potential of identifying causal genetic variants relevant to cell-type-specific diseases from our identified associated enhancers and promoters.

Conclusions

The proposed EPOM measure demonstrates superior capability in grouping and finding a clear correspondence map of biological samples from different tissue and cell types. The identified associated enhancers and promoters provide a comprehensive catalog to study distinct biological processes and disease variants in different tissue and cell types. Our results also find that the associated promoters exhibit more cell-type-specific functions than the associated enhancers do, suggesting that the non-associated promoters have more housekeeping functions than the non-associated enhancers.

  相似文献   

13.
14.
15.
16.
17.
18.
Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号