首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin is known as a representative cytoskeletal motor protein that is engaged in cell division and axonal transport. In addition to the mutant assay, recent advances using the PCR cloning technique have elucidated the existence of many kinds of kinesin-related proteins in yeast, Drosophila, and mice. We previously cloned five different members of kinesin superfamily proteins (KIFs) in mouse brain (Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. J. Cell Biol. 119:1287-1296) and demonstrated that one of them, KIF3A, is an anterograde motor (Kondo, S., R. Sato-Yashitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. J. Cell Biol. 1994. 125:1095-1107). We have now characterized another axonal transport motor, KIF2. Different from other KIFs, KIF2 is a central type motor, since its motor domain is located in the center of the molecule. Recombinant KIF2 exists as a dimer with a bigger head and plus-end directionally moves microtubules at a velocity of 0.47 +/- 0.11 microns/s, which is two thirds that of kinesin's. Immunocytological examination showed that native KIF2 is abundant in developing axons and that it accumulates in the proximal region of the ligated nerves after a 20-h ligation. Soluble KIF2 exists without a light chain, and KIF2's associated-vesicles, immunoprecipitated by anti-KIF2 antibody, are different from those carried by existing motors such as kinesin and KIF3A. They are also distinct from synaptic vesicles, although KIF2 is accumulated in so-called synaptic vesicle fractions and embryonal growth cone particles. Our results strongly suggest that KIF2 functions as a new anterograde motor, being specialized for a particular group of membranous organelles involved in fast axonal transport.  相似文献   

2.
Numerous eukaryote genome projects have uncovered a variety of kinesins of unknown function. The kinesin 9 family is limited to flagellated species. Our phylogenetic experiments revealed two subfamilies: KIF9A (including Chlamydomonas reinhardtii KLP1) and KIF9B (including human KIF6). The function of KIF9A and KIF9B was investigated in the protist Trypanosoma brucei that possesses a single motile flagellum. KIF9A and KIF9B are strongly associated with the cytoskeleton and are required for motility. KIF9A is localized exclusively in the axoneme, and its depletion leads to altered motility without visible structural modifications. KIF9B is found in both the axoneme and the basal body, and is essential for the assembly of the paraflagellar rod (PFR), a large extra-axonemal structure. In the absence of KIF9B, cells grow abnormal flagella with excessively large blocks of PFR-like material that alternate with regions where only the axoneme is present. The functional diversity of the kinesin 9 family illustrates the capacity for adaptation of organisms to suit specific cytoskeletal requirements.  相似文献   

3.
Gong TW  Winnicki RS  Kohrman DC  Lomax MI 《Gene》1999,239(1):117-127
Kinesin and kinesin-related proteins are microtubule-dependent motor proteins that transport organelles. We have cloned and sequenced a full-length 9924 bp mouse cDNA for a new kinesin of the UNC-104/KIF1 subfamily. Northern blot analysis of mouse RNAs detected high levels of a 10 kb mRNA in brain and eye, but lower levels in other tissues. Human RNA dot-blot analysis detected this mRNA in all tissues examined, although at different levels. The overall structure of the new kinesin (predicted size 204 kDa) was most similar to mouse KIF1A; however, 2.1 kb of the 5' portion of the cDNA were identical to the published sequence for KIF1B (Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., Hirokawa, N., 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220). We localized the Kif1b gene to the distal end of mouse Chromosome 4 by haplotype analysis of an interspecific backcross from The Jackson Laboratory. We had previously mapped the gene for the novel kinesin to the same location (Gong, T.-W.L., Burmeister, M., Lomax, M.I., 1996b. The novel gene D4Mille maps to mouse Chromosome 4 and human Chromosome 1p36. Mamm. Genome 7, 790-791). We conclude, therefore, that the Kif1b gene generates two major kinesin isoforms by alternative splicing. The shorter 7.8 kb mRNA encodes a 130 kDa kinesin, KIF1Bp130, whereas the 10 kb mRNA encodes a 204 kDa kinesin, KIF1Bp204. In addition, alternative splicing of two exons in the conserved region adjacent to the motor domain generates four different isoforms of each kinesin, leading to eight kinesin isoforms derived from the Kif1b gene.  相似文献   

4.
Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.  相似文献   

5.
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons.  相似文献   

6.
7.
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle‐bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin‐1, ‐2, and ‐3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long‐range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle‐bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on‐vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long‐range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.  相似文献   

8.
Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395-15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and beta'-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.  相似文献   

9.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

10.
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~ 10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins—known as the “rigor-like” state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.  相似文献   

11.
Kinesin is an ATP-driven motor protein that plays important physiological roles in intracellular transport, mitosis and meiosis, control of microtubule dynamics, and signal transduction. The kinesin family is classified into subfamilies. Kinesin species derived from vertebrates have been well characterized. In contrast, plant kinesins have yet to be adequately characterized. In this study, we expressed the motor domain of a novel rice plant-specific kinesin, K16, in Escherichia coli, and then determined its enzymatic characteristics and compared them with those of kinesin 1. Our findings demonstrated that the rice kinesin motor domain has different enzymatic properties from those of well known kinesin 1.  相似文献   

12.
Recent research on kinesin motors has outlined the diversity of the superfamily and defined specific cargoes moved by kinesin family (KIF) members. Owing to the difficulty of purifying large amounts of native motors, much of this work has relied on recombinant proteins expressed in vitro. This approach does not allow ready determination of the complement of kinesin motors present in a given tissue, the relative amounts of different motors, or comparison of their native activities. To address these questions, we isolated nucleotide-dependent, microtubule-binding proteins from 13-day chick embryo brain. Proteins were enriched by microtubule affinity purification, then subjected to velocity sedimentation to separate the 20S dynein/dynactin pool from a slower sedimenting KIF containing pool. Analysis of the latter pool by anion exchange chromatography revealed three KIF species: kinesin I (KIF5), kinesin II (KIF3), and KIF1C (Unc104/KIF1). The most abundant species, kinesin I, exhibited the expected long range microtubule gliding activity. By contrast, KIF1C did not move microtubules. Kinesin II, the second most abundant KIF, could be fractionated into two pools, one containing predominantly A/B isoforms and the other containing A/C isoforms. The two motor species had similar activities, powering microtubule gliding at slower speeds and over shorter distances than kinesin I.  相似文献   

13.
Kinesin-1 is a dimeric motor protein that moves cargo processively along microtubules. Kinesin motility has been proposed to be driven by the coordinated forward extension of the neck linker (a approximately 12-residue peptide) in one motor domain and the rearward positioning of the neck linker in the partner motor domain. To test this model, we have introduced fluorescent dyes selectively into one subunit of the kinesin dimer and performed 'half-molecule' fluorescence resonance energy transfer to measure conformational changes of the neck linker. We show that when kinesin binds with both heads to the microtubule, the neck linkers in the rear and forward heads extend forward and backward, respectively. During ATP-driven motility, the neck linkers switch between these conformational states. These results support the notion that neck linker movements accompany the 'hand-over-hand' motion of the two motor domains.  相似文献   

14.
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.  相似文献   

15.
Sperm motility and hence male fertility strictly depends on proper development of the sperm tail and its tight anchorage to the head. The main protein of sperm tail outer dense fibers, ODF1/HSPB10, belongs to the family of small heat shock proteins that function as molecular chaperones. However, the impact of ODF1 on sperm tail formation and motility and on male fecundity is unknown. We therefore generated mutant mice in which the Odf1 gene was disrupted. Heterozygous mutant male mice are fertile while sperm motility is reduced, but Odf1-deficient male mice are infertile due to the detachment of the sperm head. Although headless tails are somehow motile, transmission electron microscopy revealed disturbed organization of the mitochondrial sheath, as well as of the outer dense fibers. Our results thus suggest that ODF1, besides being involved in the correct arrangement of mitochondrial sheath and outer dense fibers, is essential for rigid junction of sperm head and tail. Loss of function of ODF1, therefore, might account for some of the cases of human infertility with decapitated sperm heads. In addition, since sperm motility is already affected in heterozygous mice, impairment of ODF1 might even account for some cases of reduced fertility in male patients.  相似文献   

16.
Cation channel of sperm 1 (CATSPER1) is a unique sperm cation channel protein, and essential for sperm function and male fertility. CATSPER1 exclusively expresses in meiotic and postmeiotic spermatogenic cells, thus belongs to the spermatogenesis-specific antigen that escape central tolerance. We have previously demonstrated the immunocontraceptive potential of its transmembrane domains and pore region, and reported the antifertility effects of its B-cell epitopes on male mice. Aiming to develop DNA vaccine targeting CATSPER1 for male contraception, here the whole open reading frame of mouse Catsper1 was cloned into the plasmid pEGFP-N1 to obtain a DNA vaccine pEGFP-N1-Catsper1. The vaccine was confirmed to be transcribed and translated in mouse N2a cell in vitro and mouse muscle tissue in vivo. Intramuscular injection with the vaccine on male mice induced specific immune reaction and caused significant inhibition on sperm hyperactivated motility and progressive motility (P<0.001 for both), and consequently reduced male fertility. The fertility rate of experimental group was 40.9%, which was significant lower (P=0.012) than control group (81.8%). No significant change in mating behavior, sperm production and histology of testis/epididymis was observed. Given that Catsper1 exhibits a high degree of homology among different species, Catsper1 DNA vaccine might be a good strategy for developing an immunocontraceptive vaccine for human and animal use.  相似文献   

17.
Unc104/KIF1A, a kinesin family member, is reported to be monomeric in solution, though its polypeptide has regions that potentially form coiled coils. For a better understanding of the mechanism underlying Unc104/KIF1A's motility, it is important to evaluate the dimerization ability of this protein. The CD measurement of relevant segments of Caenorhabditis elegans Unc104 indicated that peptides having a common region (N358-K379) showed spectra characteristic to an alpha-helix. Dimerization by coiled-coil formation was confirmed by analytical ultracentrifugation. By analyzing the concentration dependence of the CD spectra, the monomer-dimer dissociation constant, Kd, of (N354-E388) was estimated to be about 5 microM, which is considerably larger than that of the corresponding segment of human kinesin (62 nM). Though its dimerization ability is rather moderate, Unc104/KIF1A could nonetheless dimerize and therefore could move by the same mechanism as human kinesin when the concentration of Unc104 is high due to, e.g., local crowding. This suggests that the motility could be controlled by the concentration of the motor protein.  相似文献   

18.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   

19.
The kinesin superfamily motor protein KIF1B has been shown to transport mitochondria. Here, we describe an isoform of KIF1B, KIF1Bbeta, that is distinct from KIF1B in its cargo binding domain. KIF1B knockout mice die at birth from apnea due to nervous system defects. Death of knockout neurons in culture can be rescued by expression of the beta isoform. The KIF1B heterozygotes have a defect in transporting synaptic vesicle precursors and suffer from progressive muscle weakness similar to human neuropathies. Charcot-Marie-Tooth disease type 2A was previously mapped to an interval containing KIF1B. We show that CMT2A patients contain a loss-of-function mutation in the motor domain of the KIF1B gene. This is clear indication that defects in axonal transport due to a mutated motor protein can underlie human peripheral neuropathy.  相似文献   

20.
Kikkawa M  Hirokawa N 《The EMBO journal》2006,25(18):4187-4194
Kinesin is an ATP-driven microtubule (MT)-based motor fundamental to organelle transport. Although a number of kinesin crystal structures have been solved, the structural evidence for coupling between the bound nucleotide and the conformation of kinesin is elusive. In addition, the structural basis of the MT-induced ATPase activity of kinesin is not clear because of the absence of the MT in the structure. Here, we report cryo-electron microscopy structures of the monomeric kinesin KIF1A-MT complex in two nucleotide states at about 10 A resolution, sufficient to reveal the secondary structure. These high-resolution maps visualized clear structural changes that suggest a mechanical pathway from the nucleotide to the neck linker via the motor core rotation. In addition, new nucleotide binding pocket conformations are observed that are different from X-ray crystallographic structures; it is closed in the 5'-adenylyl-imidodiphosphate state, but open in the ADP state. These results suggest a structural model of biased diffusion movement of monomeric kinesin motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号