首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Influenza A virus (H1N1), a genetic reassortment of endemic strains of human, avian and swine flu, has crossed species barrier to human and apparently acquired the capability of human to human transmission. Some strains of H5N1 subtype are highly virulent because NS1 protein inhibits antiviral interferon α/β production. Another protein NS2 mediates export of viral ribonucleoprotein from nucleus to the cytoplasm through export signal. In this paper, we have studied structure-function relationships of these proteins of H1N1 subtype and have determined the cause of their pathogenicity. Our results showed that non-conservative mutations slightly stabilized or destabi- lized structural domains of NS1 or NS1-dsRNA complex, hence slightly increased or decreased the function of NS1 protein and consequently enhanced or reduced the pathogenicity of the H1N1 virus. NS2 protein of different strains carried non-conservative mutations in different domains, resulting in slight loss of function. These mutations slightly decreased the pathogenicity of the virus. Thus, the results confirm the structure-function relationships of these viral proteins.  相似文献   

2.
呼吸道合胞病毒(reespiratory syncytial virus,RSV)是引起婴幼儿和老年人下呼吸道感染的重要病原体之一.由于该病毒的致病机理还不太清楚导致目前尚无有效治疗RSV的方法.研究表明,呼吸道合胞病毒的非结构蛋白NS1、NS2具有抗细胞凋亡的作用,同时可以逃避宿主免疫系统(IFN)对病毒的干扰,有利于病毒复制.敲除这两种基因的减毒活疫苗和袁达沉默NS1的小干扰RNA(siRNA)的质粒研究已经取得了一定的进展.对非结构蛋白功能的深入研究有助于了解RSV的致病机理,同时为预防和治疗RSV感染奠定理论基础.  相似文献   

3.
4.
A型流感病毒NS1蛋白羧基端4个氨基酸可以与PDZ结构域(the domain of PSD95,Dig and ZO-1)相结合,称为PL结构域(PDZ ligand domain).对不同亚型或毒株的流感病毒而言,其NS1蛋白PL结构域的组成存在比较大的差异.有研究发现这种差异能够影响NS1与宿主细胞蛋白的相互作用进而影响病毒的致病力.为进一步探讨PL结构域对NS1蛋白生物学特性的影响,首先构建出4种不同亚型流感病毒(H1N1、H3N2、H5N1、H9N2)来源的NS1绿色荧光蛋白表达质粒.在此基础上,对野生型H3N2病毒NS1表达质粒进行人工改造,将其PL结构域缺失或者替换为其他亚型流感病毒的PL结构域,制备出4种重组NS1蛋白表达质粒.通过比较上述不同NS1蛋白在HeLa细胞中的定位情况发现,只有野生型H3N2病毒的NS1蛋白可以定位于核仁当中,而野生型H1N1、H5N1、H9N2病毒的NS1蛋白以及PL结构域缺失或替代的H3N2病毒NS1蛋白都不能定位于核仁.而通过比较上述NS1蛋白在流感病毒易感的MDCK细胞中的定位,进一步发现所有这些蛋白均不定位于核仁.上述结果表明:PL结构域的不同可以明显影响NS1蛋白在HeLa细胞核内的定位和分布,这有可能造成其生物学功能的差异.同时,NS1蛋白在细胞核内的定位还与宿主细胞的来源有着密切关系.  相似文献   

5.
The 1H-NMR spectra of the two Escherichia coli basic, low-Mr (approximately equal to 9000) DNA-binding proteins NS1 and NS2 and of their native complex NS were studied at 400 MHz and a number of resonances and resonance peaks were assigned. As in the case of some eukaryotic histones, the presence of a large number of high-field perturbed Phe resonances, several shielded and deshielded methyl resonances and backbone NH protons quite inaccessible to the solvent clearly indicate the existence of extensive tertiary and, even more so, quaternary structures involving hydrophobic interactions. These structures are lost upon heating, but readily reform upon cooling. Spectral differences between NS1, NS2 and NS and the greater thermal stability of NS indicate that molecules of the heterologous subunits (NS1 and NS2) aggregate (dimerize) preferentially in comparison to the self-aggregation of the homologous subunits. Unlike those of the eukaryotic histones, the tertiary and quaternary structures of NS are insensitive to extensive variations of the ionic strength.  相似文献   

6.
7.
制备抗登革病毒NS1蛋白单克隆抗体,建立检测NS1的ELISA方法。表达1~4型登革病毒NS1蛋白,将1型NS1蛋白纯化后免疫BALB/c小鼠,通过杂交瘤技术制备单克隆抗体。经ELISA、Western blotting、间接免疫荧光筛选和鉴定单克隆抗体,进行纯化和HRP标记。通过鉴定每两株单抗之间是否存在竞争作用,选择非竞争单抗组合并建立NS1捕获法ELISA。结果获得7株高滴度抗NS1单抗,捕获法ELISA可以检出10ng/mL NS1。原核表达登革病毒NS1蛋白制备的单抗可以和天然病毒抗原反应,NS1捕获法ELISA可以用于登革病毒感染检测。  相似文献   

8.
Dynamics and interactions of parvoviral NS1 protein in the nucleus   总被引:1,自引:0,他引:1  
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal analysis of highly synchronized infected Norden Laboratory Feline Kidney cells showed accumulation of nuclear NS1 in discrete interchromosomal foci. NS1 fused with enhanced yellow fluorescence protein (NS1-EYFP) provided a marker in live cells for dynamics of NS1 traced by photobleaching techniques. Fluorescence Recovery after Photobleaching suggested that the NS1 protein is not freely diffusing but undergoes transient interactions with nuclear compartments. Fluorescence Loss in Photobleaching demonstrated for the first time the shuttling of a parvoviral protein between the nucleus and the cytoplasm as assayed with NS1-EYFP. Finally, time-lapse imaging of infected cells revealed that the intranuclear distribution of NS1-EYFP evolves dramatically starting from the formation of NS1 foci and proceeding to a homogenous distribution extending throughout the nucleus.  相似文献   

9.
HCV基因组NS1区的分子克隆及序列测定   总被引:1,自引:0,他引:1  
李刚  王斌 《Virologica Sinica》1995,10(2):120-124
对广东省一名慢性丙型肝炎病人血清中的HCV基因组NS1区进行分子克隆及序列测定。采用微粒吸附法提取HCV RNA,随机引物逆转录后进行聚合酶链反应。所用引物位于NS1区,扩增产物780bp在低熔点琼脂糖中电泳,加嘏相应条带处凝胶,与pUC18的连接批应直接在低熔点琼脂糖中完成。重组体转化JM109,挑取菌落增殖后提取的质粒采用PCR和酶切法鉴定阳性克隆。将其中320bp的片段亚克隆到pUC18和p  相似文献   

10.
We used the yeast interaction trap system to identify a novel human 70-kDa protein, termed NS1-binding protein (NS1-BP), which interacts with the nonstructural NS1 protein of the influenza A virus. The genetic interaction was confirmed by the specific coprecipitation of the NS1 protein from solution by a glutathione S-transferase–NS1-BP fusion protein and glutathione-Sepharose. NS1-BP contains an N-terminal BTB/POZ domain and five kelch-like tandem repeat elements of ~50 amino acids. In noninfected cells, affinity-purified antibodies localized NS1-BP in nuclear regions enriched with the spliceosome assembly factor SC35, suggesting an association of NS1-BP with the cellular splicing apparatus. In influenza A virus-infected cells, NS1-BP relocalized throughout the nucleoplasm and appeared distinct from the SC35 domains, which suggests that NS1-BP function may be disturbed or altered. The addition of a truncated NS1-BP mutant protein to a HeLa cell nuclear extract efficiently inhibited pre-mRNA splicing but not spliceosome assembly. This result could be explained by a possible dominant-negative effect of the NS1-BP mutant protein and suggests a role of the wild-type NS1-BP in promoting pre-mRNA splicing. These data suggest that the inhibition of splicing by the NS1 protein may be mediated by binding to NS1-BP.  相似文献   

11.
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.  相似文献   

12.
H Hori  C J Lai 《Journal of virology》1990,64(9):4573-4577
The length of amino acid sequence at the NS1-NS2A juncture of dengue virus that is required for specific cleavage effected by the cis-acting function of NS2A was identified by deletion analysis. Recombinant DNA sequences of NS1-NS2A, each containing a deletion in NS1 followed by a sequence of 3 to 20 amino acids at the C terminus of NS1 preceding the cleavage site, were constructed and expressed with vaccinia virus as a vector. The NS1 product of recombinant vaccinia virus-infected cells was immunoprecipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The occurrence of cleavage between NS1 and NS2A was indicated by the appearance of shortened NS1. Failure to cleave this site yielded a large NS1-NS2A fusion protein. This analysis indicated that a minimum length of eight amino acids at the NS1 C terminus preceding the NS1-NS2A juncture is required for cleavage to take place. Comparison of this eight-amino-acid sequence of the NS1 C terminus of dengue type 4 virus with the analogous sequences of 12 other flaviviruses suggests that the consensus cleavage site sequence is as follows: (table; see text)  相似文献   

13.
The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur.  相似文献   

14.
Structure and function of the NS1 protein of influenza A virus   总被引:3,自引:0,他引:3  
The avian influenza A virus currently prevailing in Asia causes fatal pneumonia and multipleorgan failure in birds and humans.Despite intensive research,understanding of the characteristics of influenzaA virus that determine its virulence is incomplete.NS1A protein,a non-structural protein of influenza Avirus,was reported to contribute to its pathogenicity and virulence.NS1A protein is a multifunctionalprotein that plays a significant role in resisting the host antiviral response during the influenza infection.Thisreview briefly outlines the current knowledge on the structure and function of the NS1A protein.  相似文献   

15.
Influenza virus NS1 mRNA is spliced by host nuclear enzymes to form NS2 mRNA, and this splicing is regulated in infected cells such that the steady-state amount of spliced NS2 mRNA is only about 10% of that of unspliced NS1 mRNA. This regulation would be expected to result from a suppression in the rate of splicing coupled with the efficient transport of unspliced NS1 mRNA from the nucleus. To determine whether the rate of splicing of NS1 mRNA was controlled by trans factors in influenza virus-infected cells, the NS1 gene was inserted into an adenovirus vector. The rates of splicing of NS1 mRNA in cells infected with this vector and in influenza virus-infected cells were measured by pulse-labeling with [3H]uridine. The rates of splicing of NS1 mRNA in the two systems were not significantly different, strongly suggesting that the rate of splicing of NS1 mRNA in influenza virus-infected cells is controlled solely by cis-acting sequences in NS1 mRNA itself. In contrast to the rate of splicing, the extent of splicing of NS1 mRNA in the cells infected by the adenovirus recombinant was dramatically increased relative to that occurring in influenza virus-infected cells. This could be attributed largely, if not totally, to a block in the nucleocytoplasmic transport of unspliced NS1 mRNA in the recombinant-infected cells. Most of the unspliced NS1 mRNA was in the nuclear fraction, and no detectable NS1 protein was synthesized. When the 3' splice site of NS1 mRNA was inactivated by mutation, NS1 mRNA was transported and translated, indicating that the transport block occurred because NS1 rRNA was committed to the splicing pathway. This transport block is apparently obviated in influenza virus-infected cells. These experiments demonstrate the important role of the nucleocytoplasmic transport of unspliced NS1 mRNA in regulating the extent of splicing of NS1 mRNA.  相似文献   

16.
T Wolff  R E O'Neill    P Palese 《Journal of virology》1996,70(8):5363-5372
The yeast interaction trap system was used to identify, NS1-I (for NS1 interactor), which is a human protein that binds to the nonstructural NS1 protein of the influenza A virus. NS1-I is a human homolog of the porcine 17beta-estradiol dehydrogenase precursor protein, to which it is 84% identical. We detected only one NS1-I mRNA species, of about 3.0 kb, in HeLa cells, and the NS1-I cDNA was found to have a coding capacity for a 79.6-kDa protein. However, immunoblot analysis detected predominantly a 55-kDa protein in human cells, suggesting that NS1-I, like the porcine 17beta-estradiol dehydrogenase, is posttranslationally processed. Using an in vitro coprecipitation assay, we showed that NS1-I interacts with NS1 proteins from extracts of cells infected with five different influenza A virus strains as well as with the NS1 of an influenza B virus. The fact that influenza A and influenza B virus NS1 proteins bind to NS1-I suggests that this cellular protein plays a role in the influenza virus life cycle.  相似文献   

17.
Influenza virus NS1 protein stimulates translation of the M1 protein.   总被引:14,自引:8,他引:6       下载免费PDF全文
K Enami  T A Sato  S Nakada    M Enami 《Journal of virology》1994,68(3):1432-1437
  相似文献   

18.
Nonstructural protein 1 (NS1) of yellow fever virus (YF) is a glycoprotein localized to extracytoplasmic compartments within infected cells. We have previously shown that NS1 can be supplied in trans and is required for viral RNA replication, a process thought to occur in membrane-bound cytoplasmic complexes. Here we report that the NS1 gene from a related virus, dengue virus (DEN), is unable to function in the process of YF RNA replication. This virus-specific incompatibility leads to a lack of initial minus-strand accumulation, suggesting that DEN NS1 is unable to productively interact with the YF replicase. Based on a YF deletion mutant that requires NS1 in trans, a genetic screen for suppressor mutants was used to select virus variants able to utilize DEN NS1. In three independent selections, a single mutation was mapped to the NS4A gene, which encodes a putative transmembrane replicase component. This mutation, as well as several additional mutations, was engineered into the NS1-deficient genome and confirmed a genetic interaction between NS1 and NS4A. These findings suggest a potential mechanism for integrating NS1 into the cytoplasmic process of RNA replication.  相似文献   

19.
猪细小病毒NS1基因的原核表达及重组蛋白的复性   总被引:3,自引:0,他引:3  
利用PCR技术扩增出PPVNS1基因抗原区。将目的基因与原核表达载体pGEX-4T-1进行连接并转化,重组质粒经鉴定并测序。测序结果表明,目的基因插入的位置、大小和读码框均正确,通过试验摸索并确定了表达NS1基因的最佳诱导条件:IPTG终浓度为1.0mmol/L,诱导时间为10h,温度为37℃,其表达量占全菌蛋白的29.8%。表达产物经SDS-PAGE分析,得到分子量约为52kDa的重组蛋白且以包涵体形式存在。重组蛋白经Westernblot检测,结果证明重组蛋白可被PPV阳性血清识别。用8mol/L尿素变性溶解包涵体,再用稀释方法和还原型、氧化型谷胱甘肽系统相结合的方法对重组蛋白进行复性。ELISA检测表明,复性后的重组蛋白有良好的生物活性。  相似文献   

20.
The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号