首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk. However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in order to discover features of human eQTLs.

Results

We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues. Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping genes, and for coincidence with regulatory features, though there is little evidence of 5′ or 3′ positional bias. Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long, intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/].

Conclusions

Expression QTLs inform the interpretation of human trait variability, and may account for a greater fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies. Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-532) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
5.
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases.  相似文献   

6.
Distal expression quantitative trait loci (distal eQTLs) are genetic mutations that affect the expression of genes genomically far away. However, the mechanisms that cause a distal eQTL to modulate gene expression are not yet clear. Recent high-resolution chromosome conformation capture experiments along with a growing database of eQTLs provide an opportunity to understand the spatial mechanisms influencing distal eQTL associations on a genome-wide scale. We test the hypothesis that spatial proximity contributes to eQTL-gene regulation in the context of the higher-order domain structure of chromatin as determined from recent Hi-C chromosome conformation experiments. This analysis suggests that the large-scale topology of chromatin is coupled with eQTL associations by providing evidence that eQTLs are in general spatially close to their target genes, occur often around topological domain boundaries and preferentially associate with genes across domains. We also find that within-domain eQTLs that overlap with regulatory elements such as promoters and enhancers are spatially more close than the overall set of within-domain eQTLs, suggesting that spatial proximity derived from the domain structure in chromatin plays an important role in the regulation of gene expression.  相似文献   

7.
8.
9.
Variation in gene expression is heritable and has been mapped to the genome in humans and model organisms as expression quantitative trait loci (eQTLs). We applied integrated genome-wide expression profiling and linkage analysis to the regulation of gene expression in fat, kidney, adrenal, and heart tissues using the BXH/HXB panel of rat recombinant inbred strains. Here, we report the influence of heritability and allelic effect of the quantitative trait locus on detection of cis- and trans-acting eQTLs and discuss how these factors operate in a tissue-specific context. We identified several hundred major eQTLs in each tissue and found that cis-acting eQTLs are highly heritable and easier to detect than trans-eQTLs. The proportion of heritable expression traits was similar in all tissues; however, heritability alone was not a reliable predictor of whether an eQTL will be detected. We empirically show how the use of heritability as a filter reduces the ability to discover trans-eQTLs, particularly for eQTLs with small effects. Only 3% of cis- and trans-eQTLs exhibited large allelic effects, explaining more than 40% of the phenotypic variance, suggestive of a highly polygenic control of gene expression. Power calculations indicated that, across tissues, minor differences in genetic effects are expected to have a significant impact on detection of trans-eQTLs. Trans-eQTLs generally show smaller effects than cis-eQTLs and have a higher false discovery rate, particularly in more heterogeneous tissues, suggesting that small biological variability, likely relating to tissue composition, may influence detection of trans-eQTLs in this system. We delineate the effects of genetic architecture on variation in gene expression and show the sensitivity of this experimental design to tissue sampling variability in large-scale eQTL studies.  相似文献   

10.
Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55×10−151). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases.  相似文献   

11.
12.
Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue.  相似文献   

13.
Expression Quantitative Trait Locus (eQTL) analysis is a powerful tool to study the biological mechanisms linking the genotype with gene expression. Such analyses can identify genomic locations where genotypic variants influence the expression of genes, both in close proximity to the variant (cis-eQTL), and on other chromosomes (trans-eQTL). Many traditional eQTL methods are based on a linear regression model. In this study, we propose a novel method by which to identify eQTL associations with information theory and machine learning approaches. Mutual Information (MI) is used to describe the association between genetic marker and gene expression. MI can detect both linear and non-linear associations. What’s more, it can capture the heterogeneity of the population. Advanced feature selection methods, Maximum Relevance Minimum Redundancy (mRMR) and Incremental Feature Selection (IFS), were applied to optimize the selection of the affected genes by the genetic marker. When we applied our method to a study of apoE-deficient mice, it was found that the cis-acting eQTLs are stronger than trans-acting eQTLs but there are more trans-acting eQTLs than cis-acting eQTLs. We compared our results (mRMR.eQTL) with R/qtl, and MatrixEQTL (modelLINEAR and modelANOVA). In female mice, 67.9% of mRMR.eQTL results can be confirmed by at least two other methods while only 14.4% of R/qtl result can be confirmed by at least two other methods. In male mice, 74.1% of mRMR.eQTL results can be confirmed by at least two other methods while only 18.2% of R/qtl result can be confirmed by at least two other methods. Our methods provide a new way to identify the association between genetic markers and gene expression. Our software is available from supporting information.  相似文献   

14.
15.
16.
PIWI-interacting RNAs (piRNAs) are an emerging class of non-coding RNAs involved in tumorigenesis. Expression quantitative trait locus (eQTL) analysis has been demonstrated to help reveal the genetic mechanism of single nucleotide polymorphisms (SNPs) in cancer etiology. However, there are no databases that have been constructed to provide an eQTL analysis between SNPs and piRNA expression. In this study, we collected genotyping and piRNA expression data for 10 997 samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Using linear regression cis-eQTL analysis with adjustment of appropriate covariates, we identified millions of SNP-piRNA pairs in tumor (76 924 831) and normal (24 431 061) tissues. Further, we performed differential expression and survival analyses, and linked the eQTLs to genome-wide association study (GWAS) data to comprehensively decipher the functional roles of identified cis-piRNA eQTLs. Finally, we developed a user-friendly database, piRNA-eQTL (http://njmu-edu.cn:3838/piRNA-eQTL/), to help users query, browse and download corresponding eQTL results. In summary, piRNA-eQTL could serve as an important resource to assist the research community in understanding the roles of genetic variants and piRNAs in the development of cancers.  相似文献   

17.
18.
19.
Genome-wide association studies (GWAS) may be biased by population stratification (PS). We conducted empirical quantification of the magnitude of PS among human populations and its impact on GWAS. Liver tissues were collected from 979, 59 and 49 Caucasian Americans (CA), African Americans (AA) and Hispanic Americans (HA), respectively, and genotyped using Illumina650Y (Ilmn650Y) arrays. RNA was also isolated and hybridized to Agilent whole-genome gene expression arrays. We propose a new method (i.e., hgdp-eigen) for detecting PS by projecting genotype vectors for each sample to the eigenvector space defined by the Human Genetic Diversity Panel (HGDP). Further, we conducted GWAS to map expression quantitative trait loci (eQTL) for the ∼40,000 liver gene expression traits monitored by the Agilent arrays. HGDP-eigen performed similarly to the conventional self-eigen methods in capturing PS. However, leveraging the HGDP offered a significant advantage in revealing the origins, directions and magnitude of PS. Adjusting for eigenvectors had minor impacts on eQTL detection rates in CA. In contrast, for AA and HA, adjustment dramatically reduced association findings. At an FDR = 10%, we identified 65 eQTLs in AA with the unadjusted analysis, but only 18 eQTLs after the eigenvector adjustment. Strikingly, 55 out of the 65 unadjusted AA eQTLs were validated in CA, indicating that the adjustment procedure significantly reduced GWAS power. A number of the 55 AA eQTLs validated in CA overlapped with published disease associated SNPs. For example, rs646776 and rs10903129 have previously been associated with lipid levels and coronary heart disease risk, however, the rs10903129 eQTL was missed in the eigenvector adjusted analysis.  相似文献   

20.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号