首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveDue to limited immunological profiles of high‐grade serous ovarian cancer (HGSOC), we aimed to characterize its molecular features to determine whether a specific subset that can respond to immunotherapy exists.Materials and MethodsA training cohort of 418 HGSOC samples from TCGA was analysed by consensus non‐negative matrix factorization. We correlated the expression patterns with the presence of immune cell infiltrates, immune regulatory molecules and other genomic or epigenetic features. Two independent cohorts containing 482 HGSOCs and in vitro experiments were used for validation.ResultsWe identified immune and non‐immune groups where the former was enriched in signatures that reflect immune cells, infiltration and PD‐1 signalling (all, P < 0.001), and presented with a lower chromosomal aberrations but increased neoantigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this group was further refined into two microenvironment‐based subtypes characterized by either immunoactivation or carcinoma‐associated fibroblasts (CAFs) and distinct prognosis. CAFs‐immune subtype was enriched for factors that mediate immunosuppression and promote tumour progression, including highly expressed stromal signature, TGF‐β signalling, epithelial‐mesenchymal transition and tumour‐associated M2‐polarized macrophages (all, P < 0.001). Robustness of these immune‐specific subtypes was verified in validation cohorts, and in vitro experiments indicated that activated‐immune subtype may benefit from anti‐PD1 antibody therapy (P < 0.05).ConclusionOur findings revealed two immune subtypes with different responses to immunotherapy and indicated that some HGSOCs may be susceptible to immunotherapies or combination therapies.  相似文献   

2.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   

3.
4.
5.
SARS‐CoV‐2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID‐19. Spike protein of SARS‐CoV‐2 mediates viral entry into host cells by binding ACE2 through the receptor‐binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD‐1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD‐1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD‐1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD‐2). The secondary structure and tertiary structure of RBD‐1 were largely maintained without glycosylation. In particular, the major β‐sheet content of RBD‐1 was almost unaltered. RBD‐1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10–8 M. Thus, RBD‐1 was expected to apply in the vaccine development, screening drugs and virus test kit.  相似文献   

6.
Growing evidence has highlighted the immune response as an important feature of carcinogenesis and therapeutic efficacy in non‐small cell lung cancer (NSCLC). This study focused on the characterization of immune infiltration profiling in patients with NSCLC and its correlation with survival outcome. All TCGA samples were divided into three heterogeneous clusters based on immune cell profiles: cluster 1 (''low infiltration'' cluster), cluster 2 (''heterogeneous infiltration'' cluster) and cluster 3 (''high infiltration'' cluster). The immune cells were responsible for a significantly favourable prognosis for the ''high infiltration'' community. Cluster 1 had the lowest cytotoxic activity, tumour‐infiltrating lymphocytes and interferon‐gamma (IFN‐γ), as well as immune checkpoint molecules expressions. In addition, MHC‐I and immune co‐stimulator were also found to have lower cluster 1 expressions, indicating a possible immune escape mechanism. A total of 43 differentially expressed genes (DEGs) that overlapped among the groups were determined based on three clusters. Finally, based on a univariate Cox regression model, prognostic immune‐related genes were identified and combined to construct a risk score model able to predict overall survival (OS) rates in the validation datasets.  相似文献   

7.
Gastrointestinal stromal tumors (GISTs) are primarily characterized by activating mutations of tyrosine kinase or platelet-derived growth factor receptor alpha. Although the revolutionary therapeutic outcomes of imatinib are well known, the long-term benefits of imatinib are still unclear. The effects of BRD9, a recently identified subunit of noncanonical BAF complex (ncBAF) chromatin remodeling complexes, in GISTs are not clear. In the current study, we evaluated the functional role of BRD9 in GIST progression. Our findings demonstrated that the expression of BRD9 was upregulated in GIST tissues. The downregulation or inhibition of BRD9 could significantly reduce cellular proliferation, and facilitates apoptosis in GISTs. BRD9 inhibition could promote PUMA-dependent apoptosis in GISTs and enhance imatinib activity in vitro and in vivo. BRD9 inhibition synergizes with imatinib in GISTs by inducing PUMA upregulation. Mechanism study revealed that BRD9 inhibition promotes PUMA induction via the TUFT1/AKT/GSK-3β/p65 axis. Furthermore, imatinib also upregulates PUMA by targeting AKT/GSK-3β/p65 axis. In conclusion, our results indicated that BRD9 plays a key role in the progression of GISTs. Inhibition of BRD9 is a novel therapeutic strategy in GISTs treated alone or in combination with imatinib.Subject terms: Chemotherapy, Gastric cancer  相似文献   

8.

Background

Imatinib has become the standard first line treatment of gastrointestinal stromal tumors (GIST) in the advanced phase and adjuvant setting. We carried out an up-to-date meta-analysis to determine the practical role of mutation analysis for imatinib treatment in patients with advanced GIST.

Methods

Eligible studies were limited to imatinib treatment for patients with advanced GIST and reported on mutation analysis. Statistical analyses were conducted to calculate the odds ratio (OR), hazard ratio (HR) and 95% confidence interval (CI) using fixed-effects and random-effects models.

Results

A total of 2834 patients from 3 randomized controlled trials and 12 cohort studies were included. The ORs of response rates in KIT exon 11-mutant GISTs were 3.504 (95% CI 2.549-4.816, p<0.001) and 3.521 (95% CI 1.731-7.165, p=0.001) compared with KIT exon 9-mutant and wild type GISTs, respectively. The HRs of progression-free survival in KIT exon 11-mutant GISTs were 0.365 (95% CI 0.301-0.444, p<0.001) and 0.375 (95% CI 0.270-0.519, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. The HRs of overall survival in KIT exon 11-mutant GISTs were 0.388 (95% CI 0.293-0.515, p<0.001) and 0.400 (95% CI 0.297-0.538, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. No statistical significant differences were found between KIT exon 9-mutant and wild type. The overall response rate in KIT-exon 11-mutant GISTs were 70.5% (65%-75.9%) compared with 57.1% (51%-63.2%) in KIT-positive GISTs. No evidence of publication bias was observed.

Conclusion

Patients with advanced GIST harboring a KIT exon 11 mutation have the best response rate and long-term survival with imatinib treatment. Mutation analysis would be more helpful than KIT expression analysis to decide appropriate therapy for a specific patient.  相似文献   

9.
Colorectal cancer (CRC) is a high‐incidence malignancy worldwide which still needs better therapy options. Therefore, the aim of the present study was to investigate the responses of normal or malignant human intestinal epithelium to bone morphogenetic protein (BMP)‐9 and to find out whether the application of BMP‐9 to patients with CRC or the enhancement of its synthesis in the liver could be useful strategies for new therapy approaches. In silico analyses of CRC patient cohorts (TCGA database) revealed that high expression of the BMP‐target gene ID1, especially in combination with low expression of the BMP‐inhibitor noggin, is significantly associated with better patient survival. Organoid lines were generated from human biopsies of colon cancer (T‐Orgs) and corresponding non‐malignant areas (N‐Orgs) of three patients. The N‐Orgs represented tumours belonging to three different consensus molecular subtypes (CMS) of CRC. Overall, BMP‐9 stimulation of organoids promoted an enrichment of tumour‐suppressive gene expression signatures, whereas the stimulation with noggin had the opposite effects. Furthermore, treatment of organoids with BMP‐9 induced ID1 expression (independently of high noggin levels), while treatment with noggin reduced ID1.In summary, our data identify the ratio between ID1 and noggin as a new prognostic value for CRC patient outcome. We further show that by inducing ID1, BMP‐9 enhances this ratio, even in the presence of noggin. Thus, BMP‐9 is identified as a novel target for the development of improved anti‐cancer therapies of patients with CRC.  相似文献   

10.
In gastrointestinal stromal tumours (GISTs), the function of bromodomain‐containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low‐risk/low‐risk to high‐risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease‐free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated‐AKT‐suppressible caspases 3 and 9 activities, induced LC3‐II, exhibited dose‐dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki‐67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib‐resistant GIST through dual blockade of KIT and BRD4.  相似文献   

11.
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.  相似文献   

12.
13.
Coronavirus disease 2019 (COVID‐19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID‐19 incidence and severity as a function of age. Our analysis leveraged age‐specific COVID‐19 mortality and laboratory testing from a large COVID‐19 registry, along with epidemiological data of ~3.4 million individuals, large‐scale deep immune cell profiling data, and single‐cell RNA‐sequencing data from aged COVID‐19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C‐reactive protein, D‐dimer, and neutrophil–lymphocyte ratio) are significantly associated with age‐specific COVID‐19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID‐19 patients. Older individuals with severe COVID‐19 displayed type I and II interferon deficiencies, which is correlated with SARS‐CoV‐2 viral load. Elevated expression of SARS‐CoV‐2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID‐19 in aged individuals. Mechanistically, we identified strong TGF‐beta‐mediated immune–epithelial cell interactions (i.e., secretory‐non‐resident macrophages) in aged individuals with critical COVID‐19. Taken together, our findings point to immuno‐inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID‐19 patients.  相似文献   

14.
15.
The binding of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein to the angiotensin‐converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high‐affinity and cost‐effective ACE2 mimetic ligands that disrupt this protein–protein interaction is a promising strategy for viral diagnostics and therapy. We employed human and plant defensins, a class of small (2–5 kDa) and highly stable proteins containing solvent‐exposed alpha‐helix, conformationally constrained by two disulfide bonds. Therefore, we engineered the amino acid residues on the constrained alpha‐helix of defensins to mimic the critical residues on the ACE2 helix 1 that interact with the SARS‐CoV‐2 spike protein. The engineered proteins (h‐deface2, p‐deface2, and p‐deface2‐MUT) were soluble and purified to homogeneity with a high yield from a bacterial expression system. The proteins demonstrated exceptional thermostability (Tm 70.7°C), high‐affinity binding to the spike protein with apparent K d values of 54.4 ± 11.3, 33.5 ± 8.2, and 14.4 ± 3.5 nM for h‐deface2, p‐deface2, and p‐deface2‐MUT, respectively, and were used in a diagnostic assay that detected SARS‐CoV‐2 neutralizing antibodies. This work addresses the challenge of developing helical ACE2 mimetics by demonstrating that defensins provide promising scaffolds to engineer alpha‐helices in a constrained form for designing of high‐affinity ligands.  相似文献   

16.
The G allele of rs4702 polymorphism has been reported to reduce the production of mature BDNF and FURIN, both of which were closely associated with cognitive functions. Real‐time PCR, ELISA and luciferase assay were performed to explore the interactions between miR‐338‐3p, FURIN and BDNF. T‐RFLP was used to assess the intestinal flora in the stool samples of glioma patients after radiotherapy. We grouped the 106 glioma patients recruited according to the rs4702 polymorphism. The results showed no obvious correlation between rs4702 polymorphism and the expression of miR‐338‐3p. However, rs4702‐A was associated with increased expression of FURIN and BDNF in the serum and PBMC of glioma patients after radiotherapy. Besides, the study found that rs4702‐A was remarkably associated with increased enterotype I and decreased enterotype III in the stool of glioma patients after radiotherapy. Rs4702‐A was also proved to be closely associated with increased MMSE, role functioning and social functioning at three months after radiotherapy. Furthermore, miR‐338‐3p repressed the expression of FURIN‐G. Compared with G allele, the presence of A allele of rs4702 polymorphism in FURIN could obstruct the suppressive effect of miR‐338‐3p upon the expression of FURIN and BDNF in intestinal flora. Therefore, the carriers of A allele will be challenged with less risk of radiotherapy‐induced cognitive impairment.  相似文献   

17.
Gastrointestinal stromal tumors (GISTs) are common neoplasms of the gastrointestinal tract that can be treated successfully using C-kit target therapy and surgery; however, imatinib chemoresistance is a major barrier to success in therapy. The present study aimed to discover alternative pathways in imatinib-resistant GISTs. Long noncoding RNAs (lncRNAs) are newly discovered regulators of chemoresistance. Previously, we showed that the lncRNA HOTAIR was upregulated in recurrent GISTs. In this study, we analyzed differentially expressed lncRNAs after imatinib treatment and found that HOTAIR displayed the largest increase. The distribution of HOTAIR in GISTs was shifted from nucleus to cytoplasm after imatinib treatments. The expression of HOTAIR was validated as related to drug sensitivity through Cell Counting Kit-8 assays. Moreover, HOTAIR was associated strongly with cell autophagy and regulated drug sensitivity via autophagy. Mechanistically, HOTAIR correlated negatively with miRNA-130a in GISTs. The downregulation of miRNA-130a reversed HOTAIR-small interfering RNA-induced suppression of autophagy and imatinib sensitivity. We identified autophagy-related protein 2 homolog B (ATG2B) as a downstream target of miR-130a and HOTAIR. ATG2B downregulation reversed the effect of pEX-3-HOTAIR/miR-130a inhibitor on imatinib sensitivity. Finally, HOTAIR was shown to influence the autophagy and imatinib sensitivity of GIST cells in mouse tumor models. Our results suggested that HOTAIR targets the ATG2B inhibitor miR-130a to upregulate the level of cell autophagy so that promotes the imatinib resistance in GISTs.Subject terms: Oncogenes, Macroautophagy  相似文献   

18.
Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.  相似文献   

19.
YAP1, a key mediator of the Hippo pathway, plays an important role in tumorigenesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1‐1, which contains a single WW domain, and YAP1‐2, which contains two WW domains, respectively. We here investigated the functions and the underlying regulatory mechanisms of the two YAP1 isoforms in the context of EGF‐induced epithelial‐mesenchymal transition (EMT) in non‐small cell lung cancer (NSCLC). Human NSCLC cell lines express both YAP1‐1 and YAP1‐2 isoforms—although when compared to YAP1‐1, YAP1‐2 mRNA levels are higher while its protein expression levels are lower. EGF treatment significantly promoted YAP1 expression as well as EMT process in NSCLCs, whereas EGF‐induced EMT phenotype was significantly alleviated upon YAP1 knockdown. Under normal culture condition, YAP1‐1 stable expression cells exhibited a stronger migration ability than YAP1‐2 expressing cells. However, upon EGF treatment, YAP1‐2 stable cells showed more robust migration than YAP1‐1 expressing cells. The protein stability and nuclear localization of YAP1‐2 were preferentially enhanced with EGF treatment. Moreover, EGF‐induced EMT and YAP1‐2 activity were suppressed by inhibitor of AKT. Our results suggest that YAP1‐2 is the main isoform that is functionally relevant in promoting EGF‐induced EMT and ultimately NSCLC progression.  相似文献   

20.
SARS‐CoV‐2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS‐CoV‐2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS‐CoV‐2 viral proteins. Here, we show that the nucleocapsid of SARS‐CoV‐2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS‐CoV‐2‐infected monocytes show enhanced cellular interleukin‐1β (IL‐1β) expression, but reduced IL‐1β secretion. While SARS‐CoV‐2 infection promotes activation of the NLRP3 inflammasome and caspase‐1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS‐CoV‐2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase‐1. These insights into how SARS‐CoV‐2 antagonizes cellular inflammatory responses may open new avenues for treating COVID‐19 in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号