首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

2.
The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland.  相似文献   

3.
The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen‐presenting properties are present in the mouse pineal gland.  相似文献   

4.
The presence of kallikrein mRNA has been reported in the pineal gland of rats. Using an antibody to rat tissue kallikrein, we immunohistochemically examined the localization of cell components producing tissue kallikrein in this gland. The kallikrein immunoreactive cells were scattered in the parenchyma of the pineal gland. Their cell bodies were polymorphic with cell processes and a large nucleus similar to that of the pinealocyte. Frequently immunoreactive materials were seen to be localized in the perivascular areas.  相似文献   

5.
Several neuropeptides are present in the mammalian pineal gland. Most of these peptides, eg neuropeptide Y, vasoactive intestinal peptide, and peptide histidine isoleucine, are located in nerve fibres innervating the gland. In some mammalian species, neuropeptides are also found in cells scattered in the pineal parenchyma. In the rat, bipolar cells immunoreactive for somatostatin are present, just as cells containing mRNA encoding somatostatin can be detected in the gland by in situ hybridisation. In the pineal gland of the European hamster, many cells are immunoreactive for enkephalin. Ultrastructural cytochemical analysis of these cells reveals a pinealocyte morphology. Processes from the opioidergic pinealocytes terminate in the parenchyma between the non-immunoreactive pinealocytes. Some of the processes contain small clear and large dense core vesicles and end in club shaped swellings which make synapse-like contacts with other pinealocytes. The ultrastructural morphology suggests that the opioidergic cells exert a paracrine regulation on other pinealocytes.  相似文献   

6.
Photoreceptor cell differentiation in the rat retina was studied in vivo and in vitro, using an immunohistochemical method to demonstrate opsin-like immunoreactivity. Cells in a dissociated monolayer culture expressed some properties characteristic of rat rod cells developing in vivo, including a ciliary structure and opsin-like immunoreactivity. Immunoblot analysis revealed that cultured retinal cells synthesize a polypeptide with the same molecular weight as that synthesized by the intact retina. Although the outer segment (OS) was not present in the culture, immunoreactive cells possessed a ciliary structure. Opsin-like immunoreactivity was found on the plasma membrane, including the cilia. The neuritic extensions were also intensely stained. In mature rod cells of the intact rat retina, opsin was detected only on the OS but, during development, it was found both in the somatic region of the rod cells and on the differentiating OS. During maturation of rod cells opsin immunoreactivity seemed to shift to the OS from other locations. However, some "displaced" photoreceptor cells, found in the inner nuclear layer and extending fibers bipolarly, retained immunoreactivity throughout their structure. The absence of polarized distribution of opsin in these cells is considered to be due to an abnormal environment, which may also be the case with cultured retinal cells. The present culture conditions will offer a useful model system to understand the cellular mechanism of the hereditary retinal dystrophy of rodent animals in which photoreceptor cells selectively degenerate.  相似文献   

7.
Little is known about the developmental origin, determination and differentiation of different pineal immunoreactive cells in the avian group, and an experimental establishment is then required to explain the differentiation of cell types (i.e. photosensory, neural and secretory types). The present in vitro study suggests that the avian pineal organ is made up of multiple types of cells with different immunoreactivity at the ontogenic state (from embryonic day 9 to day 14), before it acquires the final photoendocrinal nature of the mature state. The morphometric analysis suggests that the developmental changes in the morphology of the quail pinealocytes appear to represent a condensed expression of the phylogenic development in the ontogeny. Several types of immunoreactive cells from a neuronal line were suppressed with maturation of developing pineal glands, while other cell types such as photoreceptive and endocrinal lines became more prominent. The melatonin level in the culture medium presented a high value up to 72 hr of culture, followed by a decrease as well as dampening of the level at the end of the culture possibly because the cultures were maintained in dark. The results of the present study, a combined analysis of morphometry and RIA, open a new line for research into the pineal development and cell differentiation.  相似文献   

8.
A mammalian type opsin 5 (neuropsin) is a recently identified ultraviolet (UV)-sensitive pigment of the retina and other photosensitive organs in birds. Two other opsin 5-related molecules have been found in the genomes of non-mammalian vertebrates. However, their functions have not been examined as yet. Here, we identify the molecular properties of a second avian opsin 5, cOpn5L2 (chicken opsin 5-like 2), and its localization in the post-hatch chicken. Spectrophotometric analysis and radionucleotide-binding assay have revealed that cOpn5L2 is a UV-sensitive bistable pigment that couples with the Gi subtype of guanine nucleotide-binding protein (G protein). As a bistable pigment, it also shows the direct binding ability to agonist all-trans-retinal to activate G protein. The absorption maxima of UV-light-absorbing and visible light-absorbing forms were 350 and 521 nm, respectively. Expression analysis showed relatively high expression of cOpn5L2 mRNA in the adrenal gland, which is not photoreceptive but an endocrine organ, while lower expression was found in the brain and retina. At the protein level, cOpn5L2 immunoreactive cells were present in the chromaffin cells of the adrenal gland. In the brain, cOpn5L2 immunoreactive cells were found in the paraventricular and supraoptic nuclei of the anterior hypothalamus, known for photoreceptive deep brain areas. In the retina, cOpn5L2 protein was localized to subsets of cells in the ganglion cell layer and the inner nuclear layer. These results suggest that the non-mammalian type opsin 5 (Opn5L2) functions as a second UV sensor in the photoreceptive organs, while it might function as chemosensor using its direct binding ability to agonist all-trans-retinal in non-photoreceptive organs such as the adrenal gland of birds.  相似文献   

9.
The avian pineal organ contains several types of photoreceptors with different photopigments: rhodopsin, iodopsin, and pinopsin. We have previously examined the differentiation of both rhodopsin-like and iodopsin-like immunoreactive cells during pineal development in quail embryos to determine the onset of synthesis of specific proteins and their cellular localization. In the present study, we have performed pinopsin immunohistochemistry on in-vivo developing and in-vitro cultured pineal organs of quail embryos. The results were compared with those obtained with rhodopsin and iodopsin immunohistochemistry. In the developing pineal organs, pinopsin immunoreactivity was detected at embryonic day 8, i.e. five days earlier than rhodopsin-like and iodopsin-like immunoreactivities. It was localized exclusively in the protrusions extending into the lumen throughout development, whereas rhodopsin-like and iodopsin-like immunoreactivities were usually found both in cell bodies and processes. These differences were also observed under two different types of culture conditions (dissociated cell culture and organ culture) indicating that, in the avian pineal organ, the expression pattern of the pinopsin gene is basically different from those of the other two pineal photopigments. The present study suggests that pineal cells have a mechanism for the polarized transport of pinopsin molecules.  相似文献   

10.
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented "neuron-like cells" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.  相似文献   

11.
12.
13.
The mammalian pineal gland uses L-glutamate as an intercellular chemical transmitter to regulate negatively melatonin synthesis. To receive glutamate signals, pinealocytes express at least three kinds of glutamate receptors: metabotropic receptor types 3 and 5 and an ionotropic receptor, GluR1. In this study, we examined whether or not the fourth class of ionotropic receptor, delta, which is known for its nondefinitive molecular function and its unique expression pattern in brain, is expressed in pineal gland. RT-PCR analyses with specific probes indicated the expression of mRNA of delta2 but not that of delta1 in pineal gland and cultured pineal cells. Western blotting analysis with polyclonal antibodies specific to the carboxyl-terminal region of the delta2 receptor recognized a single 110-kDa polypeptide of cerebellar membranes and specifically immunostained Purkinje cells. The delta2 antibodies recognized a 110-kDa polypeptide of pineal membranes and specifically immunostained huge glial-like cells with the occasional presence of several long, branching processes in a pineal cell culture. delta2 is not uniformly distributed throughout the cells and is relatively abundant at the periphery of the cell bodies and long processes, where the terminals of synaptophysin-positive processes of pinealocytes, a site for glutamate secretion, are frequently present. The delta2-positive cells constitute a very minor population among total pineal cells (approximately 0.03%). Double immunolabeling with delta2 antibodies and antibodies against marker proteins for pineal interstitial cells clearly distinguishes delta2-positive pineal cells and other known interstitial cells, including glial fibrillary acidic protein- or vimentin-positive glial-like cells. These results indicated that the delta2 glutamate receptor is expressed in a novel subpopulation of pineal glial-like cells in culture and suggest the presence of a glutamate-mediated intercellular signal transduction mechanism between pinealocytes and delta2-expressing cells. The pineal cells may provide a good experimental system for studies on the function of glutamate receptor delta2.  相似文献   

14.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

15.
M A Nathanson  S Binkley  R Hilfer 《In vitro》1977,13(12):843-848
By means of a newly developed method of cultivating pineal tissue in vitro, the types of cells which comprise rat pineal glands have been identified. Previous in vitro studies have involved short-term culture more suitably called "organ culture" and provide no means of assessing the contribution of a putative "pineal" cell versus any other cell type found in the cultures. Short-term outgrowths of minced rat pineal glands provided a reproducible and easily dissociated source of pineal-derived cells. In monolayer culture these cells continued to have pineal enzyme activities which were sensitive to pineal-activating substances, and the cells aggregated to mimic the lobular organization of intact glands. Two types of aggregates were found, each composed of a single morphological cell type. In addition to the transient appearance of skeletal muscle straps, connective tissue and neural/glial tissue was consistently found. The cell types are discussed in relation to their in vivo counterparts.  相似文献   

16.
Summary A combined thin-section/freeze-fracture study was performed on the superficial pineal gland of the golden hamster, comparing the parenchymal and interstitial cells of this animal with those previously investigated in rats. In contrast to rats, no gap junctions and gap/tight junction combinations could be found between pineal parenchymal cells of the hamster. Furthermore, the interstitial cells of the hamster pineal gland were found to have large flat cytoplasmic processes, which abut over large areas equipped with tight junctions. In thin sections, profiles of interstitial cell processes were seen to surround groups of pinealocytes. Interstitial cells and their sheet-like, tight junction-sealed processes thus appear to delimit lobule-like compartments of the hamster pineal gland. Because the classification of the interstitial cells is uncertain, the expression of several markers characteristic of mature and immature astrocytes and astrocyte subpopulations has been investigated by indirect immunohistology. Many of the non-neuronal elements in the pineal gland are vimentin-positive glial cells, subpopulations of which express glial fibrillary acidic protein (GFA) and C1 antigen. The astroglial character of these cells is supported by the lack of expression of markers for neuronal, meningeal and endothelial cells. M1 antigen-positive cells have not been detected.Supported by a grant from Deutsche Forschungsgemeinschaft (Scha 185/9-2)  相似文献   

17.
Summary The pineal gland in the possum is represented by a thickening in the wall of the pineal recess. A superficial pineal body and a pineal stalk are characteristically lacking.The ependyma related to the gland is specialized but differs markedly from the lining in other circumventricular organs in form and in surface morphology. Two distinct topographic zones have been recognized. In the middle is a mass of cells which form a prominent knobby-surfaced central zone. These cells are characterized by the absence of cilia, the paucity of microvilli and blebs and the presence of processes which overlap adjacent cells. A surface pattern formed of cell outlines was lacking. It is suggested that the central zone is lined by pinealocytes, supporting cells and the processes of both cell types. Most of the central zone is surrounded by an intermediate zone of variable width. The latter region has been observed to possess a circumventricular organ-type surface morphology. It is sparsely ciliated, almost totally covered by a carpet of microvilli and it exhibits a variety of surface specializations. Supraependymal cells and various transitory supraependymal cell processes are also present.Outside the specialized ependyma is the peripheral zone which like the regular ventricular lining is densely ciliated. Supraependymal processes are found among the clusters of cilia, or rarely, on the surface of the ciliary bed.Season and sex related differences in surface ultrastructure were not observed.  相似文献   

18.
The sympathetic nerve fibers originating from the superior cervical ganglia and supplying the pineal gland play the most important role in the control of the pineal activity in mammals. NPY and CPON are also present in the majority of the pinealopetal sympathetic neurons. In this study, immunohistochemical techniques were used to demonstrate the existence and coexistence of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH) as well as NPY and CPON in the nerve fibers supplying the chinchilla pineal gland. Ten two-year-old female chinchillas housed in natural light conditions were used in the study. The pineals were fixed by perfusion. ABC immunohistochemical technique and immunofluorescence labelling method were employed. TH-immunoreactive (TH-IR) varicose nerve fibers were observed in the pineal gland as well as in the posterior commissural area. Within the chinchilla pineal gland, TH-IR nerve fibers were located in the capsule and connective tissue septa. Numerous varicose TH-IR branches penetrated into the parenchyma and formed a network showing the highest density in the proximal region of the gland. In the central and distal parts of the pineal parenchyma, a subtle network, composed of thin varicose nerve branches, was observed. Double immunostaining revealed that the majority of TH-IR nerve fibers was positive for DbetaH or NPY. TH- and DbetaH-positive neuron-like cells were observed in the proximal region of the gland. The pattern of pineal innervation immunoreactive to CPON was similar to the innervation containing NPY, TH and DbetaH. The chinchilla intrapineal innervation containing TH, DbetaH, NPY and CPON is characterized by the higher density in the proximal part of the gland than in the middle and distal ones. The specific feature of the chinchilla pineal is also the presence of single TH/DbetaH-immunoreactive neuron-like cells in the proximal part of the gland.  相似文献   

19.
Using antibodies against AVT, alpha-MSH, LHRH and somatostatin, immunoreactive cells were detected in the rat pineal gland. All of these antibodies stain the same cells, which also react immunocytochemically when an antibody against the UMO5R sheep pineal fraction, a fraction that presents antigonadotropic properties in vivo, is used. Relatively more immunoreactive cells are present in the pineals of young rats than in the pineals of adult animals. Comparison of the results obtained with different potent antibodies against each of the peptides, and a study of the staining properties of the antibodies in the pineal after solid phase absorption to different peptides or to different sheep pineal fractions, led to the proposal that the immunoreactivity found in the rat pineal is not due to the presence of AVT, alpha-MSH, LHRH or somatostatin, but to a cross-reaction of each of these antibodies with (an) unidentified compound(s). This compound is synthetized in the pineal gland, as was demonstrated using cultured pineals. The UMO5R and the Prot. 4 fractions of the sheep pineal seem to be chemically related to this unknown compound, the possible endocrine nature of which is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号