共查询到20条相似文献,搜索用时 1 毫秒
1.
2.
Xiao Feng Lei Zhang Wei Feng Ce Zhang Tingting Jin Jingyu Li Jincai Guo 《Journal of cellular and molecular medicine》2022,26(8):2299
Proliferation and migration of keratinocytes are vital processes for the successful epithelization specifically after wounding. MiR‐221 has been identified to play a potential role in promoting wound regeneration by inducing blood vessel formation. However, little is known about the role of miR‐221 in the keratinocyte proliferation and migration during wound healing. An in vivo mice wound‐healing model was generated; the expression levels of miR‐221 were assessed by qRT‐PCR and fluorescence in situ hybridization. Initially, we found that miR‐221 was upregulated in the proliferative phase of wound healing. Further, in an in vivo wound‐healing mice model, targeted delivery of miR‐221 mimics accelerated wound healing. Contrastingly, inhibition of miR‐221 delayed healing. Additionally, we observed that overexpression of miR‐221 promoted cell proliferation and migration, while inhibition of miR‐221 had the opposite effects. Moreover, we identified SOCS7 as a direct target of miR‐221 in keratinocytes and overexpression of SOCS7 reversed the effects of miR‐221 in HaCaT keratinocytes. Finally, we identified that YB‐1 regulates the expression of miR‐221 in HaCaT keratinocytes. Overall, our experiments suggest that miR‐221 is regulated by YB‐1 in HaCaT keratinocytes and acts on SOCS7, thereby playing an important role in HaCaT keratinocyte proliferation and migration during wound healing. 相似文献
3.
Jinping Huang Xiao Sheng Zhangpeng Zhuo Danqing Xiao Kun Wu Gang Wan Haiyang Chen 《Cell proliferation》2022,55(1)
ObjectivesAdult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified.Materials and MethodsFlies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms.ResultsHere, we report a member of the chloride channel family, ClC‐c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC‐c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway.ConclusionOur findings reveal an ISC‐specific function of ClC‐c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis. 相似文献
4.
Andrea Latini Chiara Vancheri Francesca Amati Elena Morini Sandro Grelli Matteucci Claudia Petrone Vita Vito Luigi Colona Michela Murdocca Massimo Andreoni Vincenzo Malagnino Massimiliano Raponi Dario Cocciadiferro Antonio Novelli Paola Borgiani Giuseppe Novelli 《Journal of cellular and molecular medicine》2022,26(19):4940
5.
Ran Wang Zhikang Chen Yi Zhang Shihan Xiao Wuming Zhang Xianqin Hu Qun Xiao Qing Liu Xiangyu Wang 《Journal of cellular and molecular medicine》2023,27(3):392
Flotillin‐1(FLOT1) has long been recognized as a tumour‐promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM. 相似文献
6.
Jaehoon Lee Sangkyu Park Naeun Oh Jaehyun Park Mijin Kwon Jeongmin Seo Sangho Roh 《Cell proliferation》2021,54(6)
ObjectivesWhether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity‐associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L‐14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high‐fat‐diet (HFD) mouse model.Materials and methodsMouse pre‐adipocyte 3T3‐L1 cells and human bone marrow mesenchymal stem cells (hBM‐MSC) were treated with L‐14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti‐adipogenic effects was analysed at cellular and molecular levels. L‐14 extract was orally administrated to HFD‐feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti‐adipogenic mechanism of exopolysaccharide (EPS) isolated from L‐14 extract was also analysed using Toll‐like receptor 2 (TLR2) inhibitor C29.ResultsL‐14 extract inhibited 3T3‐L1 and hBM‐MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L‐14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L‐14 extract also significantly decreased the serum triacylglycerol/high‐density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis.ConclusionsEPS from L‐14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L‐14 extract improves obesity and obesity‐associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders. 相似文献
7.
8.
Xueqing Hu Wenqian Zhou Shun Wu Rui Wang Zhiyong Luan Xin Geng Na Xu Zhaoyong Zhang Zhenmin Ruan Zenghui Wang Furong Li Chen Yu Hongqi Ren 《Journal of cellular and molecular medicine》2022,26(2):507
Lipopolysaccharide (LPS)‐induced sepsis‐associated acute kidney injury (SA‐AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA‐AKI in vivo and in vitro, respectively. Medium‐ and high‐dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll‐like receptor 4 (TLR4)/myeloid differential protein‐88 (MyD88)/nuclear factor‐kappa (NF‐κB) signalling pathway was also dramatically inhibited by medium‐ and high‐dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS‐induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS‐induced AKI by inhibiting TLR4/MyD88/NF‐κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS‐induced SA‐AKI. 相似文献
9.
Rene M van der Sluis Lamin B Cham Albert GrisOliver Kristine R Gammelgaard Jesper G Pedersen Manja Idorn Ulvi Ahmadov Sabina Sanches Hernandez Ena Cmalovic Stine H Godsk Jacob Thyrsted Jesper D Gunst Silke D Nielsen Janni J Jrgensen Tobias Wang Bjerg Anders Laustsen Line S Reinert David Olagnier Rasmus O Bak Mads Kjolby Christian K Holm Martin Tolstrup Sren R Paludan Lasse S Kristensen Ole S Sgaard Martin R Jakobsen 《The EMBO journal》2022,41(10)
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection. 相似文献
10.
Joanne L Usher Alvaro SanchezMartinez Ana TerrienteFelix PoLin Chen Juliette J Lee ChunHong Chen Alexander J Whitworth 《EMBO reports》2022,23(12)
Parkinson''s disease‐related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1‐Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1–Parkin pathway operates in vivo, we developed methods to detect Ser65‐phosphorylated ubiquitin (pS65‐Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1‐dependent pS65‐Ub production, while pS65‐Ub accumulates in unstimulated parkin‐null flies, consistent with blocked degradation. Additionally, we show that pS65‐Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65‐Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat‐induced pS65‐Ub in an Atg5‐null background. Thus, we have established that pS65‐Ub immunodetection can be used to analyse Pink1‐Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1‐Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo. 相似文献
11.
Xiaoliang Zhou Hao Wang Deguan Li Naling Song Fujun Yang Wenqing Xu 《Journal of cellular and molecular medicine》2022,26(5):1621
The Hippo signalling pathway has been considered as potential therapeutic target in self‐renewal and differentiation of stem and progenitor cells. Thus, mammalian Ste20‐like kinase 1/2 (MST1/2) as the core serine‐threonine kinases in the Hippo signalling pathway has been investigated for its role in immunological disease. However, little information of MST1/2 function in bone marrow suppression induced by ionizing radiation was fully investigated. Here, we reported that MST1/2 inhibitor XMU‐MP‐1 could rescue the impaired haematopoietic stem cells (HSCs) and progenitor cells (HPCs) function under oxidative stress condition. Also, XMU‐MP‐1 pretreatment markedly alleviated the small intestinal system injury caused by the total body irradiation 9 Gy and extended the average survival days of the mice exposed to the lethal dose radiation. Therefore, irradiation exposure causes the serious pathological changes of haematopoietic and intestinal system, and XMU‐MP‐1 could prevent the ROS production, the haematopoietic cells impairment and the intestinal injury. These detrimental effects may be associated with regulating NOX/ROS/P38MARK pathway by MST1/2. 相似文献
12.
Jiajia Lu Zhibin Zhou Jun Ma Nan Lu Zhu Lei Di Du Aimin Chen 《Journal of cellular and molecular medicine》2020,24(24):14316
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis. 相似文献
13.
HuiJu Yang Bharath Kumar Velmurugan MuKuan Chen ChiaChieh Lin YuSheng Lo YiChing Chuang HsinYu Ho MingJu Hsieh JiunnLiang Ko 《Journal of cellular and molecular medicine》2022,26(23):5807
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although cisplatin‐based chemotherapy is commonly used in HNSCC, frequent development of cisplatin resistance is a potential cause of poor HNSCC prognosis. In the present study, we investigated the anticancer efficacy of a major paclitaxel metabolite namely 7‐Epitaxol in cisplatin‐resistant HNSCC. The findings revealed that 7‐Epitaxol exerts cytotoxic effects in cisplatin‐resistant HNSCC cell lines by inducing cell cycle arrest and intrinsic and extrinsic apoptotic pathways. Specifically, 7‐Epitaxol increased Fas, TNF‐R1, DR5, DcR3 and DcR2 expressions, reduced Bcl‐2 and Bcl‐XL (anti‐apoptotic proteins) expressions, and increased Bid and Bim L/S (pre‐apoptotic proteins) expressions, leading to activation of caspase‐mediated cancer cell apoptosis. At the upstream cell signalling level, 7‐Epitaxol reduced the phosphorylation of AKT, ERK1/2 and p38 to trigger apoptosis. In vivo results showed that animals treated with 7‐Epitaxol show antitumor growth compared to control animals. Taken together, the study demonstrates the potential anticancer efficacy of 7‐Epitaxol in inducing apoptosis of cisplatin‐resistant HNSCC cells through the suppression of AKT and MAPK signalling pathways. 相似文献
14.
Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor‐β (TGF‐β) is a multi‐tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF‐β promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF‐β activity. There is also evidence of a relation between TGF‐β with programmed death‐ligand 1 (PD‐L1) expression within TME, and it influences the efficacy of anti‐programmed death‐1 receptor (PD‐1) or anti‐PD‐L1 therapy. Combination of TGF‐β inhibitors with anti‐PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF‐β traps with anti‐PD‐L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem. 相似文献
15.
16.
MengJie Zhao Xiao Yao Ping Wei Chen Zhao Meng Cheng Dong Zhang Wen Xue WenTian He Weili Xue Xinxin Zuo LeiLei Jiang Zhiyuan Luo Jiaqi Song WenJie Shu HanYe Yuan Yi Liang Hui Sun Yan Zhou Yu Zhou Ling Zheng HongYu Hu Jiwu Wang HaiNing Du 《EMBO reports》2021,22(6)
Pathological TDP‐43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD‐TDP); however, how TDP‐43 aggregation and function are regulated remain poorly understood. Here, we show that O‐GlcNAc transferase OGT‐mediated O‐GlcNAcylation of TDP‐43 suppresses ALS‐associated proteinopathies and promotes TDP‐43''s splicing function. Biochemical and cell‐based assays indicate that OGT''s catalytic activity suppresses TDP‐43 aggregation and hyperphosphorylation, whereas abolishment of TDP‐43 O‐GlcNAcylation impairs its RNA splicing activity. We further show that TDP‐43 mutations in the O‐GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP‐43 overexpression in Drosophila motor neurons. We finally demonstrate that O‐GlcNAcylation of TDP‐43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O‐GlcNAcylation might be a target for the treatment of TDP‐43‐linked pathogenesis. 相似文献
17.
18.
Jos R. Jaramillo Ponce Anne ThobaldDietrich Philippe Bnas Caroline Paulus Claude Sauter Magali Frugier 《Protein science : a publication of the Protein Society》2023,32(2)
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl‐tRNA synthetases (aaRS), the glutamyl‐ (ERS), glutaminyl‐ (QRS), and methionyl‐ (MRS) tRNA synthetases. In eukaryotes, such multi‐aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N‐terminal GST‐like domain involved in the assembly of two independent complexes: the Q‐complex (tRip:ERS:QRS) and the M‐complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST‐like domains of tRip and ERS (tRip‐N:ERS‐N) is central. In this study, the crystal structure of the N‐terminal GST‐like domain of ERS was solved and made possible further investigation of the solution architecture of the Q‐ and M‐complexes by small‐angle x‐ray scattering (SAXS). This strategy relied on the engineering of a tRip‐N‐ERS‐N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed. 相似文献
19.
Yunxia He Jinming Qi Lucheng Xiao Lijuan Shen Weili Yu Tao Hu 《Engineering in Life Science》2021,21(6):453
SARS‐CoV‐2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID‐19. Spike protein of SARS‐CoV‐2 mediates viral entry into host cells by binding ACE2 through the receptor‐binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD‐1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD‐1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD‐1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD‐2). The secondary structure and tertiary structure of RBD‐1 were largely maintained without glycosylation. In particular, the major β‐sheet content of RBD‐1 was almost unaltered. RBD‐1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10–8 M. Thus, RBD‐1 was expected to apply in the vaccine development, screening drugs and virus test kit. 相似文献
20.
Shixiang Bao Shuai Jin Chunhua Wang Peipei Tu Kongwang Hu Jingtao Lu 《Journal of cellular and molecular medicine》2020,24(23):14110
Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down‐regulate circular RNA (circRNA) 7, up‐regulate micro RNA (miRNA) 7‐5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE‐cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR‐7‐5p blocked the formation of VM and expression of VE‐cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR‐7‐5p might directly target the VE‐cadherin and Notch4 3′UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE‐cadherin revealed that shVE‐cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE‐cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down‐regulating circRNA7/miRNA7‐5p/VE‐Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC. 相似文献