首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.  相似文献   

2.
Tomato (Lycopersicon esculentum) is one of the widely grown vegetables worldwide. Fusarium oxysporum f. sp. lycopersici (FOL) is the significant contributory pathogen of tomato vascular wilt. The initial symptoms of the disease appear in the lower leaves gradually, trail by wilting of the plants. It has been reported that FOL penetrates the tomato plant, colonizing and leaving the vascular tissue dark brown, and this discoloration extends to the apex, leading to the plants wilting, collapsing and dying. Therefore, it has been widely accepted that wilting caused by this fungus is the result of a combination of various physiological activities, including the accumulation of fungal mycelia in and around xylem, mycotoxin production, inactivation of host defense, and the production of tyloses; however, wilting symptoms are variable. Therefore, the selection of molecular markers may be a more effective means of screening tomato races. Several studies on the detection of FOL have been carried out and have suggested the potency of the technique for diagnosing FOL. This review focuses on biology and variability of FOL, understanding and presenting a holistic picture of the vascular wilt disease of tomato in relation to disease model, biology, virulence. We conclude that genomic and proteomic approachesare greater tools for identification of informative candidates involved in pathogenicity, which can be considered as one of the approaches in managing the disease.  相似文献   

3.
In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell‐free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol–plant–pathogen interaction system. Two‐week‐old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell‐free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata‐Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS‐ and CF‐induced resistance was evaluated using JA‐ and SA‐impaired tomato lines. We observed that JA‐deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild‐type (WT) BGS‐treated tomato plants showed a higher JA level and significantly lower disease incidence. SA‐deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF‐treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA‐responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA‐inducible pathogenesis‐related protein 1 acidic (PR1a) gene was up‐regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.  相似文献   

4.
A simple and green method was developed for the extracellular biosynthesis of silver chloride nanoparticles, free from silver nanoparticles, using cell-free filtrate of a thermotolerant fungal strain Aspergillus terreus 8. The synthesized silver chloride nanoparticles exhibited characteristic absorption maximum at 275 nm. As-fabricated AgCl-NPs were characterized by UV-vis spectroscopy, XRD, SEM-EDX, and FT-IR. The biosynthesized silver chloride nanoparticles exhibited strong antimicrobial activity towards pathogenic microorganisms such as Fusarium oxysporum f. sp. vasinfectum and Verticillium dahliae. The synthesized silver chloride nanoparticles can be exploited as a promising new biocide bionanocomposite against pathogenic microorganisms.  相似文献   

5.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

6.
The antifungal activity of chitosan against Fusarium spp. was investigated based on in vitro and in vivo assays, and its possible modes of action were also explored. Chitosan applied at 4.0 g/L of acetic acid-distilled water solution significantly decreased the mycelial growth of Fusarium oxysporum, Fusarium sambucinum and Fusarium graminearum by 88.4%, 89.0% and 89.8%, respectively. Tuber treatment by chitosan (4.0 g/L) of acetic acid-distilled water solution, prior to inoculation, reduced dry rot severity induced by F. oxysporum and F. sambucinum by 60.0% and 48.2%, respectively. When tested as plant treatment, potato plants inoculated with Fusarium species, exhibited 33.5%–45.3% less wilting severity as compared to the control. This abiotic treatment improved the phenolic compounds activities and defence-related enzymes such as peroxidase and polyphenoloxidase in potato tubers inoculated with Fusarium spp. Results clearly demonstrated that chitosan could be explored as an alternative agent to chemical fungicides for the control of tuber dry rot and Fusarium wilt through induction of the plant defence system.  相似文献   

7.
Pathogenicity-impaired mutants, B02 and H15, of Fusarium oxysporum f. sp. lycorpersici (FOL) were obtained using restriction enzyme-mediated integration. Disease severities of Fusarium wilt caused by these mutants were significantly reduced, and their disease development rates were correlated with their colonization rates in tomato vessels. Both B02 and H15 produced significantly smaller amounts of extracellular proteins as well as fusaric acid than the wild-type. Southern blot analyses suggested that B02 and H15 likely contain a single and three copies of transformation vector, respectively. These mutants may thus be useful in isolating genes involved in pathogenicity of FOL.  相似文献   

8.
【背景】马铃薯干腐病是一种由镰刀菌引起的田间和储藏期都普遍发生的病害,主要引起块茎腐烂,致使马铃薯品质和产量降低,严重影响其食用价值和经济价值。【目的】发掘有效的生防菌株以控制马铃薯干腐病,并探究其抑菌作用。【方法】从甘肃定西地区马铃薯根际土壤中分离到109株细菌,以硫色镰刀菌(Fusarium sulphureum)为靶标菌,采用平板对峙法筛选拮抗菌,并通过形态学、生理生化特征及16S r RNA基因序列分析对拮抗菌株进行鉴定。检测拮抗菌无菌发酵液对F.sulphureum菌丝生长、孢子萌发、马铃薯块茎损伤接种病斑直径、干腐病发病率及对绿豆种子发芽的影响。【结果】筛选到一株对马铃薯干腐病有较强抑制作用的菌株YL11,经鉴定其为假单胞菌属(Pseudomonas sp.)菌株。YL11菌株无菌发酵液对F.sulphureum菌丝生长、孢子萌发、马铃薯块茎病斑扩展、干腐病发病率、毒素活性均有显著抑制作用。20%无菌发酵液对F.sulphureum菌落生长的抑制率达到87.3%;75%无菌发酵液可完全抑制孢子萌发;无菌发酵液浸泡能有效抑制马铃薯干腐病病斑的扩展,14 d时对病斑扩展的抑制率达到67.1%;90 d后干腐病的发生率降低了68.4%;同时降低了F.sulphureum毒素的活性。【结论】拮抗菌株YL11能显著抑制F.sulphureum的生长,对马铃薯干腐病有较强的生物防治效果,具有潜在的应用价值。  相似文献   

9.
Soil samples from both healthy and diseased paprika roots were tested to identify their mycoflora. Thirty-one species belonging to 16 genera were collected from rhizosphere and rhizoplane samples. The most frequently isolated fungi were Aspergillus flavus, A. niger, A. terreus, Fusarium oxysporum, Penicillium jensenii and Trichoderma harzianum. Fusarium oxysporum was the most common Fusarium species in the rhizoplane samples of diseased roots and identification was confirmed by RAPD-PCR technique. Trichoderma harzianum, T. pseudokoningii and Glioclaium roseum were chosen to study their biological control efficiency against Fusarium oxysporum. These fungal species reduced the percentage of seedling infection to 25, 40 and 50%, respectively. With the increasing of fungicide (Folicur and Ridomil) doses the dry weight of F. oxysporum decreased. Also, the increasing of fungicide dose lead to a slight decrease in the dry weight of T. harzianum, T. pseudokoningii and Glioclaium roseum.  相似文献   

10.
Fusarium wilt of tomato (Solanum lycopersicum Mill.) caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder and H. N. Hans (Fol.), is most serious and versatile pathogen. Chemical control of disease is not satisfactory and biological control is an attractive and potential alternative to the use of chemicals to control fusarium wilt of tomato. No any bioagent is universally effective everywhere therefore, search for potential biocontrol agent is continuous process and mandatory for several and individual ecological niches. In this experiment biocontrol efficacy of five species of Aspergillus and five species of Trichoderma were evaluated in vitro against Fusarium oxysporum f. sp. lycopersici. In both the experiments (dual culture and culture filtrates) T. harzianum was found to be highly effective against the isolates of Fol. followed by A. niger biocontrol potential of A. terreus is least among all the isolates tested. Culture filtrates obtained from A. luchuensis exerted least inhibition of Fol. The most sensitive isolate of Fol. against all the antagonists tested was identified as IIVR-2 (Fol. 9). Inherent diversity among Fol. isolates, from different tomato growing regions in India, was determined using RAPD primers. The genetic similarity coefficients ranged from 0.20 to 0.96, indicating that no any two or more isolates were 100% similar. RAPD profiles revealed up to 20% genetic diversity among ten isolates of Fusarium oxysporum f. sp. lycopersici.  相似文献   

11.
The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H ?1H COSY, 1H ?13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.  相似文献   

12.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

13.
Selective pressure induces pathogens to change their method of infection and, sometimes, causes species to become infectious. Pathogenic fungi must differentiate different morphological and physiological properties during the process of host specialization in their life cycle. In the present study, we conducted a genetic investigation and compared similarities within a generation of Fusarium oxysporum forma speciales (f. sp.) infecting tomato and forma (f.) infecting eggplants using selected ISSR and RAPD markers, two horticultural commodities belonging to the same taxon of the Solanaceae. Interestingly, genetic data showed that fungi belonging to F. oxysporum f. sp. infecting tomato have a close genetic relationship with the fungi f. infecting eggplant. Furthermore, F. oxysporum f. sp. infecting tomato showed less genetic variation than F. oxysporum f. melongenae, suggesting that it could be developed more recently during host adaptation. On the other hand, the gene sequence of inter-simple sequence repeat (ISSR) markers resulting in high polymorphism showed matches with gene sequences encoding specific proteins related to pathogenicity of F. oxysporum species. These findings support the notion that selected ISSR markers can be used to follow host-associated divergence of F. oxysporum species infecting tomato and eggplant and that differentiation of their specific genes can also be related to pathogenicity and development as predictive studies before initiating detailed sequencing analysis.  相似文献   

14.
An endophytic fungus (Botryosphaeria rhodina) was isolated from the stems of the medicinal plant Bidens pilosa (Asteraceae) that is known for its anti-inflammatory, antiseptic and antifungal effects. The ethyl acetate extract of the fungal isolate exhibits significant antifungal activity as well as potent cytotoxic and antiproliferative effects against several cancer cell lines. Activity-guided fractionation resulted in the isolation of a complex of four depsidones, botryorhodines A-D and the auxin indole carboxylic acid. Botryorhodine A and B show moderate to weak cytotoxic activities against HeLa cell lines with a CC50 of 96.97 μM and 36.41 μM, respectively. In addition, they also show antifungal activity against a range of pathogenic fungi such as Aspergillus terreus (MIC 26.03 μM for botryorhodine A and 49.70 μM for B) and the plant pathogen Fusarium oxysporum (MIC 191.60 μM for botryorhodine A and 238.80 μM for B). A potential role of the endophyte in modulating fungal populations living within or attacking the host plant is discussed.  相似文献   

15.
In an attempt to promote mycological fat formation from sweet potatoes, the sweet potato medium was supplemented with magnesium sulphate or sodium phosphate. The sweet potato medium itself was used either as such or after hydrolysis with acid or with enzyme. Two local fungi were used, namely,Aspergillus oryzae andA. terreus. Addition of magnesium or phosphate enhanced carbohydrate absorption from the external medium. This occurred to a remarkable extent in enzyme-hydrolysed sweet potato medium and when both factors were present. The presence of magnesium or phosphate suppressed fungal growth in acid-hydrolysed media particularly in case ofA. terreus. In untreated media either factor promoted growth ofA. oryzae but suppressed that ofA. terreus.  相似文献   

16.
17.
Aims: To isolate and identify antioomycete substances from Fusarium oxysporum EF119 against Phytophthora infestans and to investigate their antimicrobial activities against various plant pathogenic bacteria, oomycetes and true fungi. Methods and Results: Two antioomycete substances were isolated from liquid cultures of F. oxysporum EF119, which shows a potent disease control efficacy against tomato late blight caused by P. infestans. They were identified as bikaverin and fusaric acid by mass and nuclear magnetic resonance spectral analyses. They inhibited the mycelial growth of plant pathogenic oomycetes and fungi. Fusaric acid also effectively suppressed the cell growth of various plant pathogenic bacteria, but bikaverin was virtually inactive. Treatment with bikaverin at 300 μg ml?1 suppressed the development of tomato late blight by 71%. Fusaric acid provided effective control against tomato late blight and wheat leaf rust over 67% at concentrations more than 100 μg ml?1. Conclusions: Both bikaverin and fusaric acid showed in vitro and in vivo antioomycete activity against P. infestans. Significance and Impact of the Study: Fusarium oxysporum EF119 producing both bikaverin and fusaric acid may be used as a biocontrol agent against tomato late blight caused by P. infestans.  相似文献   

18.
The xylanolytic enzymes produced by Trichoderma reesei QM 9414, Aspergillus awamori VTT-D-75028, Fusarium oxysporum VTT-D-80134, Bacillus subtilis ATCC 12711 and Streptomyces olivochromogenes ATCC 21713 differed with respect to β-xylosidase activity and side-group cleaving activities. The highest xylanase activity was produced by T. reesei. All the fungi produced β-xylosidase, whereas in the bacterial culture filtrates β-xylosidase activity was negligible. T. reesei culture filtrate contained all the side-group cleaving activities assayed (acetyl esterase, α-glucuronidase and α-arabinosidase) and those of F. oxysporum and S. olivochromogenes contained esterase. All the side-group cleaving activities were low in the culture filtrates of A. awamori and B. subtilis.The differences between the xylanolytic systems were reflected in the hydrolysis of steamed birchwood hemicellulose. The xylose yields obtained ranged from 0 (with B. subtilis) to 90% (with T. reesei) of the theoretical maximum. The best enzyme for complete hemicellulose hydrolysis was therefore that of T. reesei. However, in some applications in which complete hydrolysis is not needed or in which hydrolysis of cellulose is to be avoided, one of the other xylanases may be more suitable than that of T. reesei.  相似文献   

19.
Here we report for the first time the isolation of butyl 2,3‐dihydroxybenzoate (B2,3DB) from the novel antagonistic bacterium Paenibacillus elgii HOA73 and its activity against Fusarium oxysporum f.sp. lycopersici (FOL). In this study, the bacterial strain P. elgii HOA73 was isolated from soil and identified via 16S rRNA gene sequence analysis. The isolate demonstrated significant antagonism towards several plant pathogens including FOL. Our results showed the bacterial culture filtrate of P. elgii HOA73 to be highly active, inhibiting 86.1% of the growth of FOL at 50% concentration. Similarly, the bacterial crude extract of P. elgii HOA73 at 2 mg significantly inhibited FOL growth by 72.5%. An antifungal compound was purified from the bacterial crude extract of P. elgii HOA73 through different chromatographic techniques and was identif‐ied as butyl 2,3‐dihydroxybenzoate (B2,3DB) based on nuclear magnetic resonance and liquid chromatography‐mass spectrometry analyses. B2,3DB displayed potent antifungal properties, inhibiting FOL growth by 83.2% when used at 0.6 mg. The minimum inhibitory concentration of B2,3DB to inhibit any visible mycelial growth of FOL was 32 μg ml?1. All FOL conidia displayed an absence of germination or degradation when treated with 32 μg ml?1 B2,3DB after 8 or 24 h, respectively. Therefore, our results clearly demonstrated B2,3DB, as well as P. elgii HOA73, as potential biological control agents for the management of FOL.  相似文献   

20.
Rice (Oryza sativa) is a staple food in Thailand and, in addition, feeds around one half of the world’s population. Therefore, diseases of rice are of special concern. Rice is destroyed by 2 main pathogens, Fusarium oxysporum and Pyricularia oryzae the causative agents of root rot and blast in rice respectively. These pathogens result in low grain yield in Thailand and other Southeast Asian countries. Soil samples were taken from paddy fields in Northern Thailand and bacteria were isolated using the soil dilution plate method on Nutrient agar. Isolation yielded 216 bacterial isolates which were subsequently tested for their siderophore production and effectiveness in inhibiting mycelial growth in vitro of the rice pathogenic fungi; Alternaria sp., Fusarium oxysporum, Pyricularia oryzae and Sclerotium sp., the causal agent of leaf spot, root rot, blast and stem rot in rice. It was found that 23% of the bacteria isolated produced siderophore on solid plating medium and liquid medium, In dual culture technique, the siderophore producing rhizobacteria showed a strong antagonistic effect against the Alternaria (35.4%), Fusarium oxysporum (37.5%), Pyricularia oryzae (31.2%) and Sclerotium sp. (10.4%) strains tested. Streptomyces sp. strain A 130 and Pseudomonas sp. strain MW 2.6 in particular showed a significant higher antagonistic effect against Alternaria sp. while Ochrobactrum anthropi D 5.2 exhibited a good antagonistic effect against F. oxysporum. Bacillus firmus D 4.1 inhibited P. oryzae and Kocuria rhizophila 4(2.1.1) strongly inhibited Sclerotium sp. P. aureofaciens AR 1 was the best siderophore producer overall and secreted hydroxamate type siderophore. This strain exhibits an in vitro antagonistic effect against Alternaria sp., F. oxysporum and P. oryzae. Siderophore production in this isolate was maximal after 15 days and at an optimal temperature of 30°C, yielding 99.96 ± 0.46 μg ml?1 of siderophore. The most effective isolates were identified by biochemical tests and molecular techniques as members of the Genus Bacillus, Pseudomonas and Kocuria including B. firmus D 4.1, P. aureofaciens AR1 and Kocuria rhizophila 4(2.1.1). The study demonstrated antagonistic activity towards the target pathogens discussed and are thus potential agents for biocontrol of soil borne diseases of rice in Thailand and other countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号