首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extensive array of long, crisscrossing microtubules has been discovered in the cortex of oocytes of the starfish Pisaster ochraceus. The microtubules were visualized in cortex preparations by indirect immunofluorescence microscopy using antibodies to tubulin. The cortical array of microtubules is present in all oocytes before and for about 30 min after the application of 1-methyladenine, the hormone that induces oocyte maturation. The presence of microtubules was confirmed by electron microscopy. The microtubules in this array are depolymerized when oocytes are treated with colchicine or nocodozole and are augmented when oocytes are treated with taxol. Dihydrocytochalasin B treatment of the oocytes causes the microtubules to aggregate, presumably by altering a microfilament network also found in the cortex. The distribution of microtubules was also explored in whole oocytes stained with antitubulin. One or two aster-like structures were observed adjacent to the germinal vesicle of each oocyte.  相似文献   

2.
Evidence from several cell types indicates that chromatin can induce microtubule assembly in its vicinity. To determine whether this activity is present in sperm chromatin, whose biochemical composition differs from somatic chromatin, mouse oocytes that were undergoing meiotic maturation were inseminated. Maturing oocytes are not activated by sperm penetration but remain arrested at metaphase. The sperm chromatin within the oocyte cytoplasm initially became dispersed and later, under the influence of oocyte cytoplasmic factors, recondensed into a small mass of individual chromosomes. When inseminated oocytes were processed for immunofluorescence using an anti--tubulin antibody, microtubules were never associated with dispersed sperm chromatin, although the chromosomes of the oocyte were arranged on a spindle. In contrast, microtubules were associated with the majority of sperm nuclei that had become recondensed, and were frequently arranged into a spindle-like structure. When oocytes had been penetrated by more than three sperm, most sperm nuclei remained at the dispersed chromatin stage and these were never associated with microtubules. Exposure of polyspermic oocytes to taxol, which promotes microtubule assembly, failed to induce microtubule assembly around dispersed sperm chromatin. Exposure of monospermic oocytes to nocodazole, which inhibits tubulin polymerization, prevented resolution of the recondensed sperm chromatin into individual chromosomes. These results suggest that sperm chromatin lacks an activity that can induce local microtubule assembly, and that it acquires this activity once modified by oocyte cytoplasmic factors.  相似文献   

3.
4.
Microtubule assembly in surf clam oocytes is dependent upon events that occur during fertilization. Prior to fertilization there are few, if any microtubules, but within minutes after fertilization microtubules assemble to form the meiotic apparatus. This study demonstrates that the assembly of microtubules after fertilization may be dependent on the fertilization-induced pH change of the cytoplasm. Since the magnitude of the intracellular pH (pHi) change in Spisula oocytes has not been determined, surf clam microtubule assembly was examined at pH values that reflect the pHi change that occurs during sea urchin fertilization. The results indicate that microtubule assembly in crude oocyte extracts is favored at alkaline pH. In contrast, purified surf clam tubulin assembles to a greater extent at pH 6.6 than at pH 7.2. These results reveal that the tubulin in unfertilized oocytes can assemble into microtubules at pH 6.6 but that they are prevented from doing so by pH-dependent cytoplasmic regulatory factors in the oocyte.  相似文献   

5.
Assembly-competent tubulin was purified from the cytoplasm of unfertilized and parthogenetically activated oocytes, and from isolated meiotic spindles of the surf clam, Spisula solidissima. At 22 degrees C or 37 degrees C, Spisula tubulin assembled into 48-51-nm macrotubules during the first cycle of polymerization and 25-nm microtubules during the third and subsequent cycles of assembly. Macrotubules were formed from sheets of 26-27 protofilaments helically arranged at a 36 degree angle relative to the long axis of the polymer and were composed of alpha and beta tubulins and several other proteins ranging in molecular weight from 30,000 to 270,000. Third cycle microtubules contained 14-15 protofilaments in cross-section and were composed of greater than 95% alpha and beta tubulins. After three cycles of polymerization at 37 degrees C, unfertilized and activated oocyte tubulin self-assembled into microtubules at a critical concentration (Ccr) of 0.09 mg/ml. At the physiological temperature of 22 degrees C, unfertilized oocyte tubulin assembled into microtubules at a Ccr of 0.36 mg/ml, activated oocyte tubulin assembled at a Ccr of 0.42 mg/ml, and isolated meiotic spindle tubulin assembled at a Ccr of 0.33 mg/ml. The isoelectric points of tubulin from both unfertilized oocytes and isolated meiotic spindles were 5.8 for alpha tubulin and 5.6 for beta tubulin. In addition, one dimensional peptide maps of oocyte and spindle alpha and beta tubulins were very similar, if not identical. These results indicate that unfertilized oocyte tubulin and tubulin isolated from the first meiotic spindle are indistinguishable on the basis of assembly properties, isoelectric focusing, and one dimensional peptide mapping. These results suggest that the transition of tubulin from the quiescent oocyte state to that competent to form spindle microtubules in vivo does not require special modification of tubulin but may involve changes in the availability of microtubule organizing centers or assembly-promoting microtubule-associated proteins.  相似文献   

6.
Changes in the hydrodynamic properties of microtubules induced by taxol   总被引:1,自引:0,他引:1  
Microtubule assembly was followed and monitored by (1) the turbidity at 350 nm, (2) the weight of the pelleted microtubules, (3) linear dichroism, LD tau, of the turbidity upon flow orientation, (4) the specific viscosity, eta spec, and (5) electron microscopy. These five methods showed the same features for normal microtubule assembly, but were different in the presence of taxol, a drug which binds to tubulin. The The apparent steady state of microtubule assembly in the presence of taxol as found by turbidity or the weight of pelleted polymer did not represent a stable state, as both LD tau and eta spec continued to change for a much longer time. Microtubules assembled in the presence of taxol from microtubule proteins as well as from purified tubulin were difficult to orient, as high flow gradients were needed and the maximal LD tau value represented only 20% of the LD tau for normal microtubules. In contrast to the slow relaxation of normal microtubules, rapid relaxation to random orientation was found in the presence of taxol. Low orientability was also indicated by electron micrographs, in which pelleted microtubules were seen to be randomly oriented in the presence of taxol. Taxol induced a very high eta spec, 4-times the steady-state value in the initial phase of assembly, which slowly declined again to a steady state, an effect which was also found for assembly of purified tubulin assembled in the absence of the microtubule-associated proteins. The presence of taxol did not change the relative amount and composition of the microtubule-associated proteins in the assembled microtubules. The results therefore suggest that taxol alters the hydrodynamic properties of the microtubules due to its interaction with tubulin and that this alteration is not an effect of the microtubule-associated proteins.  相似文献   

7.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

8.
We analyzed the organization of the microtubular cytoskeleton and the distribution of centrosomes at the different stages of differentiation of the ovarian follicle of the lizard Podarcis sicula by examining immunolabeled α‐ and γ‐tubulins using confocal microscopy. We observed that in the follicular epithelium the differentiation of the nurse pyriform cells is accompanied by a reorganization of the microtubules in the oocyte cortex, changing from a reticular to a radial pattern. Furthermore, these cortical microtubules extend in the cytoplasm of the connected follicle cells through intercellular bridges. Radially oriented microtubules were still more marked in the oocyte cortex during the final stages of oogenesis, when the yolk proteins were incorporated by endocytosis. The nucleation centres of the microtubules (centrosomes) were clearly detectable as γ‐tubulin immunolabeled spots in the somatic stromal cells of the germinal bed. A diffuse cytoplasmic immunolabeling together with multiple labeled foci, resembling the desegregation of the centrosomes in early oogenesis of vertebrates and invertebrates, was revealed in the prediplotenic germ cells. In the cytoplasm of growing oocytes, a diffuse labeling of the γ‐tubulin antibody was always detectable. In the growing ovarian follicles, immunolabeled spots were detected in the mono‐layered follicle cells which surrounded the early oocytes. In follicles with a polymorphic follicular epithelium, only the small follicle cells showed labeled spots. A weak and diffuse labeling was observed in the pyriform cells while in the enlarging intermediate cells the centrosomes degenerated like in the early oocytes. Our observations confirm that in P. sicula most of the oocyte growth is supported by the structural and functional integration of the developing oocyte with the pyriform nurse cells and suggest that their fusion with the oocyte results in an acquirement by these somatic cells of characteristics typical of the germ cells. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

10.
We have investigated the differences in microtubule assembly in cytoplasm from Xenopus oocytes and eggs in vitro. Extracts of activated eggs could be prepared that assembled extensive microtubule networks in vitro using Tetrahymena axonemes or mammalian centrosomes as nucleation centers. Assembly occurred predominantly from the plus-end of the microtubule with a rate constant of 2 microns.min-1.microM-1 (57 s-1.microM-1). At the in vivo tubulin concentration, this corresponds to the extraordinarily high rate of 40-50 microns.min-1. Microtubule disassembly rates in these extracts were -4.5 microns.min-1 (128 s-1) at the plus-end and -6.9 microns.min-1 (196 s-1) at the minus-end. The critical concentration for plus-end microtubule assembly was 0.4 microM. These extracts also promoted the plus-end assembly of microtubules from bovine brain tubulin, suggesting the presence of an assembly promoting factor in the egg. In contrast to activated eggs, assembly was never observed in extracts prepared from oocytes, even at tubulin concentrations as high as 20 microM. Addition of oocyte extract to egg extracts or to purified brain tubulin inhibited microtubule assembly. These results suggest that there is a plus-end-specific inhibitor of microtubule assembly in the oocyte and a plus-end-specific promoter of assembly in the eggs. These factors may serve to regulate microtubule assembly during early development in Xenopus.  相似文献   

11.
Changes in organelle topography and microtubule configuration have been studied during the resumption and progression of meiosis in cultured preovulatory rat oocytes. Germinal vesicle breakdown (GVBD) was reversibly inhibited by dibutyryl cAMP (DcAMP) or nocodazole, a microtubule-disrupting agent. The microtubule stabilizing agent taxol did not inhibit GVBD, but did impair further maturation. The migration of acidic organelles and chromatin in living oocytes was analyzed using the vital stains acridine orange and Hoechst 33258, respectively. Germinal vesicle stage oocytes undergo perinuclear aggregation of acidic organelles during GVBD and these organelles subsequently disperse into the cell cortex as the first meiotic spindle migrates to the oocyte periphery. DcAMP and nocodazole block the perinuclear aggregation of acidic organelles, whereas, in taxol-treated oocytes, organelle aggregation and GVBD occur but the dispersion of acidic organelles was arrested. Dose-response studies on the effects of nocodazole showed that GVBD was generally retarded and that a 50% inhibition of GVBD was achieved at concentrations in excess of 1.0 microM. Concentrations of taxol at 10 microM or above effectively inhibited both chromatin condensation and meiotic spindle formation. Indirect immunofluorescence microscopy with anti-tubulin antibodies revealed dissolution of microtubules with 1.0 microM nocodazole. Taxol had little effect on microtubule organization in germinal vesicle or chromatin condensation stage oocytes; however, when oocytes that had formed first meiotic spindles were treated with taxol, numerous microtubule asters appeared which were preferentially associated with the oocyte cortex. The changes in organelle topography, microtubule configuration, and drug sensitivity are discussed with respect to the regulation of cytoplasmic reorganization during the meiotic maturation of rat preovulatory oocytes.  相似文献   

12.
《The Journal of cell biology》1988,107(6):2647-2656
The twofold purpose of the study was (a) to determine if a MAP-1-like protein was expressed in human prostatic DU 145 cells and (b) to demonstrate whether a novel antimicrotubule drug, estramustine, binds the MAP-1-like protein to disrupt microtubules. SDS-PAGE and Western blots showed that a 330-kD protein was associated with microtubules isolated in an assembly buffer containing 10 microM taxol and 10 mM adenylylimidodiphosphate. After purification to homogeneity on an A5m agarose column, the 330-kD protein was found to promote 6 S tubulin assembly. Turbidimetric (A350), SDS-PAGE, and electron microscopic studies revealed that micromolar estramustine inhibited assembly promoted by the 330-kD protein. Similarly, estramustine inhibited binding of the 330-kD protein to 6-S microtubules independently stimulated to assemble with taxol. Immunofluorescent studies with beta- tubulin antibody (27B) and MAP-1 antibody (MI-AI) revealed that 60 microM estramustine (a) caused disassembly of MAP-1 microtubules in DU 145 cells and (b) removed MAP-1 from the surfaces of microtubules stabilized with 0.1 microM taxol. Taken together the data suggested that estramustine binds to a 330-kD MAP-1-like protein to disrupt microtubules in tumor cells.  相似文献   

13.
The objective of the present study was to examine the effects of cumulus cells, cytochalasin B (CB), and taxol on the development of ovine matured oocyte following solid surface vitrification (SSV). In experiment 1, effects of cumulus cells during the vitrification were examined. Survival rates after warming were not different between ovine mature oocytes with cumulus cells and without cumulus cells. After in vitro fertilization, rates of embryonic cleavage and development to blastocyst were not different between these two groups. In experiment 2, the effects of cytochalasin B (CB) on vitrification of ovine matured oocytes were examined. The rates of survived ovine matured oocytes were not significantly different among the treatment with 0, 2.5, 5.0, 7.5 and 10.0 microg/mL CB. After in vitro fertilization, the rate of cleavage was not different between the five treatment groups. However, vitrified oocytes treated with 7.5 or 10.0 microg/mL CB resulted in a higher (8.1+/-4.6% and 7.8+/-2.4% respectively, P<0.05) blastocyst development rate than those of oocytes treated with lower CB concentrations. In Experiment 3, the effects of taxol on vitrification of ovine matured oocytes were examined. The rate of survived oocytes was not significantly different among the taxol treatment group with 0, 0.5, 1.0, and 5.0 microM taxol. After in vitro fertilization, the rates of embryos that reached cleavage were not different between the four treatment groups. However, vitrified oocytes treated with 0.5 microM taxol resulted in a higher blastocyst (10.1%+/-6.3, P<0.05) development rate compared to other treatment groups. In conclusion, no effect of cumulus cells on vitrification of ovine matured oocytes was detected in this study. Pretreatment of ovine matured oocytes with cytoskeletal inhibitor cytochalasin B or taxol have a positive effect and helps to reduce the damage induced by vitrification and is a potential way to improve the development of vitrified/warmed ovine matured oocytes.  相似文献   

14.
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes.  相似文献   

15.
Taxol, a drug which promotes microtubule assembly, was used to assess the microtubule nucleating activity of pericentriolar material (PCM) in mouse oocytes prevented from undergoing germinal vesicle breakdown (GVBD), compared with oocytes allowed to proceed normally through GVBD and also in nucleate and anucleate oocyte fragments. Both immunofluorescence staining and ultrastructural analysis reveal that taxol induces aster formation in the cortex of oocytes undergoing GVBD, while formation of a continuous sheet of microtubule bundles parallel to the membrane is induced in metabolically GV-arrested oocytes. Since taxol also induces the formation of asters in anucleate as well as in nucleate oocyte fragments, provided they are not treated with activators of protein kinases A or C, it is concluded that microtubule nucleating activity is related to the acquisition of Maturation Promoting Factor (MPF) and does not require mixing between the nucleoplasm and cytoplasm.  相似文献   

16.
The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.  相似文献   

17.
A heat stable microtubule-associated protein of Mr 190,000 (190-kDa MAP) has been purified from bovine adrenal cortex (Murofushi, H., Kotani, S., Aizawa, H., Hisanaga, S., Hirokawa, N., and Sakai, H. (1986) J. Cell Biol. 103, 1911-1919). Limited chymotryptic digestion of 190-kDa MAP produced a fragment of Mr 27,000 (27-kDa fragment), which bound to microtubules reconstituted in the presence of taxol. This fragment was purified with the aid of cosedimentation with microtubules. The purified 27-kDa fragment showed an ability to stimulate tubulin polymerization in the absence of taxol. Electron microscopic observation of microtubules reconstituted from purified 27-kDa fragment and tubulin revealed that the microtubules were in the form of thick bundles and that lateral projections which can be seen in microtubules reconstituted from intact 190-kDa MAP and tubulin were not observed. These results indicate that 27-kDa fragment includes or is a part of microtubule-binding domain of 190-kDa MAP and that this fragment is active in stimulating microtubule assembly. Amino acid analysis revealed that the 27-kDa fragment was rich in lysine, proline, and alanine, the sum of these three being about 45% of the total amino acids and that the contents of methionine, tyrosine, phenylalanine, and histidine were very low. These data suggest that the microtubule binding domain of the 190-kDa MAP comprises an unique structure.  相似文献   

18.
M F Carlier  D Pantaloni 《Biochemistry》1983,22(20):4814-4822
Taxol has been used as a tool to investigate the relationship between microtubule assembly and guanosine 5'-triphosphate (GTP) hydrolysis. The data support the model previously proposed [Carlier, M.-F., & Pantaloni, D. (1981) Biochemistry 20, 1918] that GTP hydrolysis is not tightly coupled to the polymerization process but takes place as a monomolecular process following polymerization. The results further indicate that the energy liberated by GTP hydrolysis is not responsible for the subsequent blockage of GDP on polymerized tubulin. When tubulin is polymerized in the presence of 10-100 microM taxol, the rapid formation of a large number of very short microtubules (l less than 1 micron) is accompanied by the development of turbidity to a lesser extent than what is observed when the same weight amount of longer microtubules (l = 5 microns) is formed. A slower subsequent turbidity increase corresponds to the length redistribution of these short microtubules into 3-5-fold longer ones without any change in the weight amount of polymer. The evolution of the rate of length redistribution with the concentration of taxol suggests a model within which taxol would bind to dimeric tubulin and to tubulin present at the ends of microtubules with a somewhat 10-fold lower affinity than to polymerized tubulin embedded in the bulk of microtubules. In agreement with this model, binding of taxol to the tubulin-colchicine complex in the dimeric form could be measured from the increase in the GTPase activity of the tubulin-colchicine complex accompanying taxol binding.  相似文献   

19.
Mitochondrial distribution and microtubule organization were examined in porcine oocytes after parthenogenesis, fertilization and somatic cell nuclear transfer (SCNT). Our results revealed that mitochondria are translocated from the oocyte's cortex to the perinuclear area by microtubules that either constitute the sperm aster in in vitro-fertilized (IVF) oocytes or originate from the donor cell centrosomes in SCNT oocytes. The ability to translocate mitochondria to the perinuclear area was lower in SCNT oocytes than in IVF oocytes. Sperm-induced activation rather than electrical activation of SCNT oocytes as well as the presence of the oocyte spindle enhanced perinuclear mitochondrial association with reconstructed nuclei, while removal of the oocyte spindle prior to sperm penetration decreased mitochondrial association with male pronuclei without having an apparent effect on microtubules. We conclude that factors derived from spermatozoa and oocyte spindles may affect the ability of zygotic microtubules to translocate mitochondria after IVF and SCNT in porcine oocytes. Mitochondrial association with pronuclei was positively related with embryo development after IVF. The reduced mitochondrial association with nuclei in SCNT oocytes may be one of the reasons for the low cloning efficiency which could be corrected by adding yet to be identified, sperm-derived factors that are normally present during physiological fertilization.  相似文献   

20.
Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-alpha tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible-but before NEB is complete-results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号