首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we characterized 47 food-borne isolates of Bacillus cereus using multilocus sequence typing (MLST). Newly determined sequences were combined with sequences available in public data banks in order to produce the largest data set possible. Phylogenetic analysis was performed on a total of 296 strains for which MLST sequence information is available, and three main lineages—I, II, and III—within the B. cereus complex were identified. With few exceptions, all food-borne isolates were in group I. The occurrence of horizontal gene transfer (HGT) among various strains was analyzed by several statistical methods, providing evidence of widespread lateral gene transfer within B. cereus. We also investigated the occurrence of toxin-encoding genes, focusing on their evolutionary history within B. cereus. Several patterns were identified, indicating a pivotal role of HGT in the evolution of toxin-encoding genes. Our results indicate that HGT is an important element in shaping the population structure of the B. cereus complex. The results presented here also provide strong evidence of reticulate evolution within the B. cereus complex.  相似文献   

2.
Horizontal gene transfer (HGT), non-hereditary transfer of genetic material between organisms, accounts for a significant proportion of the genetic variability in bacteria. In Gram negative bacteria, the nucleoid-associated protein H-NS silences unwanted expression of recently acquired foreign DNA. This, in turn, facilitates integration of the incoming genes into the regulatory networks of the recipient cell. Bacteria belonging to the family Enterobacteriaceae express an additional protein, the Hha protein that, by binding to H-NS, potentiates silencing of HGT DNA. We provide here an overview of Hha-like proteins, including their structure and function, as well as their evolutionary relationship. We finally present available information suggesting that, by expressing Hha-like proteins, bacteria such as Escherichia coli facilitate HGT incorporation and hence, the impact of HGT in their genetic diversity.  相似文献   

3.
Horizontal gene transfer (HGT) in bacteria generates variation and drives evolution, and conjugation is considered a major contributor as it can mediate transfer of large segments of DNA between strains and species. We previously described a novel form of chromosomal conjugation in mycobacteria that does not conform to classic oriT-based conjugation models, and whose potential evolutionary significance has not been evaluated. Here, we determined the genome sequences of 22 F1-generation transconjugants, providing the first genome-wide view of conjugal HGT in bacteria at the nucleotide level. Remarkably, mycobacterial recipients acquired multiple, large, unlinked segments of donor DNA, far exceeding expectations for any bacterial HGT event. Consequently, conjugal DNA transfer created extensive genome-wide mosaicism within individual transconjugants, which generated large-scale sibling diversity approaching that seen in meiotic recombination. We exploited these attributes to perform genome-wide mapping and introgression analyses to map a locus that determines conjugal mating identity in M. smegmatis. Distributive conjugal transfer offers a plausible mechanism for the predicted HGT events that created the genome mosaicism observed among extant Mycobacterium tuberculosis and Mycobacterium canettii species. Mycobacterial distributive conjugal transfer permits innovative genetic approaches to map phenotypic traits and confers the evolutionary benefits of sexual reproduction in an asexual organism.  相似文献   

4.

Background

Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT) between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements.

Principal Findings

EvoPrinter analysis of 13 different Staphylococcus aureus genomes revealed that one of the human isolates, the hospital epidemic methicillin-resistant MRSA252 strain, uniquely shares multiple putative HGT DNA sequences with different causative agents of bovine mastitis that are not found in the other human S. aureus isolates. MRSA252 shares over 14 different DNA sequence blocks with the bovine mastitis ET3 S. aureus strain RF122, and many of the HGT DNAs encode virulence factors. EvoPrinter analysis of the MRSA252 chromosome also uncovered virulence-factor encoding HGT events with the genome of Listeria monocytogenes and a Staphylococcus saprophyticus associated plasmid. Both bacteria are also causal agents of contagious bovine mastitis.

Conclusions

EvoPrinter analysis reveals that the human MRSA252 strain uniquely shares multiple DNA sequence blocks with different causative agents of bovine mastitis, suggesting that HGT events may be occurring between these pathogens. These findings have important implications with regard to animal husbandry practices that inadvertently enhance the contact of human and livestock bacterial pathogens.  相似文献   

5.

Background

Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage.

Results

Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus.

Conclusion

Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).
  相似文献   

6.
Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.  相似文献   

7.

Background

Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive.

Results

Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses.

Conclusion

We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.  相似文献   

8.
The primary plant cell wall comprises the most abundant polysaccharides on the Earth and represents a rich source of energy for organisms which have evolved the ability to digest them. Enzymes able to degrade plant cell wall polysaccharides are widely distributed in micro-organisms but are generally absent in animals, although their presence in insects, especially phytophagous beetles from the superfamilies Chrysomeloidea and Curculionoidea, has recently begun to be appreciated. The observed patchy distribution of endogenous genes encoding these enzymes in animals has raised questions about their evolutionary origins. Recent evidence suggests that endogenous plant cell wall degrading enzymes-encoding genes have been acquired by animals through a mechanism known as horizontal gene transfer (HGT). HGT describes how genetic material is moved by means other than vertical inheritance from a parent to an offspring. Here, we provide evidence that the mustard leaf beetle, Phaedon cochleariae, possesses in its genome genes encoding active xylanases from the glycoside hydrolase family 11 (GH11). We also provide evidence that these genes were originally acquired by P. cochleariae from a species of gammaproteobacteria through HGT. This represents the first example of the presence of genes from the GH11 family in animals.  相似文献   

9.
Horizontal gene transfer (HGT), a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of HGT on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. This issue, however, remains unresolved because the various methods developed to detect potential HGT events identify different sets of genes. The present-day consensus is that phylogenetic analysis of individual genes is still the most objective and accurate approach for determining the occurrence and directionality of HGT. Here we present a genome-scale phylogenetic analysis of protein-encoding genes from five closely related Chlamydia, identifying a reliable set of sequences that have arisen via HGT since the divergence of the Chlamydia lineage. According to our knowledge, this is the first systematic phylogenetic inference-based attempt to establish a reliable set of acquired genes in a bacterial genome. Although Chlamydia are obligate intracellular parasites of higher eukaryotes, and thus suspected to be isolated from HGT more than the free-living species, our results show that their diversification has involved the introduction of foreign sequences into their genome. Furthermore, we also identified a complete set of genes that have undergone deletion, duplication, or rearrangement during this evolutionary period leading to the radiation of Chlamydia species. Our analysis may provide a deeper insight into how these medically important pathogens emerged and evolved from a common ancestor.  相似文献   

10.
Horizontal gene transfer (HGT) plays an important role in evolutionary processes as organisms adapt to their environments, and now cases of gene duplication after HGT in eukaryotes are emerging at an increasing rate. However, the fate and roles of the duplicated genes over time in eukaryotes remain unclear. Here we conducted a comprehensive analysis of the evolution of cysteine synthase (CYS) in lepidopteran insects. Our results indicate that HGT-derived CYS genes are widespread and have undergone duplication following horizontal transfer in many lepidopteran insects. Moreover, lepidopteran CYS proteins not only have β-cyanoalanine synthase activity but also possess cysteine synthase activity that is involved in sulfur amino acid biosynthesis. Duplicated CYS genes show marked divergence in gene expression patterns and enzymatic properties, suggesting that they probably have undergone subfunctionalization and/or neofunctionalization in Lepidoptera. The gene transfer of CYS genes and subsequent duplication appears to have facilitated the adaptation of lepidopteran insects to different diets and promoted their ecological diversification. Overall, this study provides valuable insights into the ecological and evolutionary contributions of CYS in lepidopteran insects.Subject terms: Molecular ecology, Molecular evolution  相似文献   

11.
Bacteria acquire new DNA in a process known as horizontal gene transfer (HGT). To investigate the evolutionary impact of this transfer of DNA, various methods have been developed to detect past HGT events. For example, codon usage-based methods detect the presence of transferred genes by identifying atypical patterns of codon usage. However, some inherited genes exhibit atypical codon usage and some transferred genes have codon usage patterns similar to those of the inherited genes. In this study, we used a comparative phylogenetic approach with Methylobacterium and Caulobacter species to demonstrate that even well-designed codon usage methods fail to detect many HGT events and generate a high rate of false positives (60–75 %) and false negatives (23–61 %). Therefore, we recommend caution when employing codon usage methods to identify transferred genes and suggest that the rapidly increasing availability of bacterial genome sequences makes the phylogenetic approach the method of choice.  相似文献   

12.
Peptidylarginine deiminase (PADI)-like cDNA sequence was isolated from rainbow trout (Oncorhynchus mykiss). It consists of a 111-bp 5′-untranslated region, a 731-bp 3′-UTR, and a 2,010-bp open reading frame encoding a protein of 669 amino acids. In the presence of calcium ions, PADI enzymes catalyze the post-translational modification reaction generating citrulline residues. Mammalian PADI enzymes are involved in a number of regulatory processes during cell differentiation and development such as skin keratinization, myelin maturation, and histone deimination. Though five PADI isotypes have been isolated from mammals, in bony fish only one PADI enzyme is present, which contains conserved amino acid residues responsible for catalysis and calcium ion-binding. Sequence identity of piscine PADI protein sequences available at gene databases exceeds 67%. Phylogenetic analyses revealed that not only piscine, but also amphibian and avian PADI-like proteins share most identical amino acid residues with mammalian PADI2. mRNA level of trout PADI-like gene is high in skin, fin, gills, brain, and spleen of rainbow trout. Quantitative Real-Time RT-PCR revealed that PADI gene is differentially expressed in liver, trunk kidney, and spleen of two trout strains, the freshwater-cultured STEELHEAD trout and the brackish water strain BORN.  相似文献   

13.
Horizontal gene transfer (HGT) is thought to have been involved in both prokaryotic and eukaryotic evolution. However, the extent to which it shapes eukaryotic genomes is still questionable. The ability to detect and study horizontal gene transfer events is of significant importance to our understanding of its effect on the evolution of eukaryotic genes and genomes. We performed phylogenetic analysis of a published anti-bacterial protein AP1 from potato (Solanum tuberosum). One domain encodes a phosphoesterase with high similarity to an acid phosphatase of Ralstonia solanacearum and closely related Betaproteobacteria. The second domain encodes an UspA-like domain similar to those present in plants. Our phylogenetic analyses suggest that both domains evolved along different evolutionary pathways until they merged into a single gene. We propose that the phosphoesterase domain was acquired by HGT. Our results support claims in favor of HGT detection at the protein domain level. The case of anti-bacterial protein AP1 in potato highlights the significance of gene fusion/protein domain fusion as an important feature of horizontal gene transfer which may contribute substantially to the adaptive abilities of eukaryotic organisms.  相似文献   

14.
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.  相似文献   

15.
16.

Background  

Today it is widely accepted that plastids are of cyanobacterial origin. During their evolutionary integration into the metabolic and regulatory networks of the host cell the engulfed cyanobacteria lost their independency. This process was paralleled by a massive gene transfer from symbiont to the host nucleus challenging the development of a retrograde protein translocation system to ensure plastid functionality. Such a system includes specific targeting signals of the proteins needed for the function of the plastid and membrane-bound machineries performing the transfer of these proteins across the envelope membranes. At present, most information on protein translocation is obtained by the analysis of land plants. However, the analysis of protein import into the primitive plastids of glaucocystophyte algae, revealed distinct features placing this system as a tool to understand the evolutionary development of translocation systems. Here, bacterial outer membrane proteins of the Omp85 family have recently been discussed as evolutionary seeds for the development of translocation systems.  相似文献   

17.
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667–248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.  相似文献   

18.
Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks.  相似文献   

19.
Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate‐specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists, and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14%–17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2%–4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome‐wide approaches to infer the tree of microbial eukaryotes.  相似文献   

20.

Background

Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. Panagrolaimus superbus is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that P. superbus uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.

Results

To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of P. superbus. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at http://www.nematodes.org/nembase4/species_info.php?species=PSC. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from P. superbus. Notable among those is a putative lineage expansion of the lea (late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific sxp/ral-2 family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-??-1,3-glucanase (GHF5 family), most similar to a sequence from Phytophthora infestans. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This P. superbus sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants glutathione peroxidase, dj-1 and 1-Cys peroxiredoxin, an shsp sequence and an lea gene.

Conclusions

P. superbus appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of lea genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of P. superbus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号