首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.  相似文献   

2.
3.
SYNOPSIS. Tracer technic has proved to be an excellent tool in the study of predator-prey relationships among the foraminifera. More than fifty axenic species of protists including diatoms, dinoflagellates, chlorophytes, chrysophytes, cyanophytes, bacteria and yeasts were tested as potential food for Allogromia sp (NF), A. laticollaris, Am. monia beccarii, Quinqueloculina spp, Rosalina floridana, Anomalina sp, Elphidium sp, Spiroloculina hyalina, Globigerina bulloides, and Globorotalia truncatulinoides. Although many types of potential food are present in the environment, foraminifera select only certain organisms. The yeasts, cyanophytes, dinoflagellates, chrysophytes and most bacteria tested were not eaten. Selected species of diatoms, chlorophytes and bacteria were eaten in large quantity. Three additional factors affect feeding: the “age” of the food organism, the “age” of the foraminifer or its position in the life cycle, and the concentration of the food. Feeding by foraminifera on most food is erratic below a concentration of 103 organisms and is approximately directly proportional to concentration within a range of 103-106 organisms per 10 ml experimental tube. A natural bloom of Protelphidium tisburyensis was analyzed. A high concentration of 6 species of diatoms characterized the community. A “bloom”-feeder hypothesis for foraminiferal nutrition is presented.  相似文献   

4.
Background:Severe COVID-19 appears to disproportionately affect people who are immunocompromised, although Canadian data in this context are limited. We sought to determine factors associated with severe COVID-19 outcomes among recipients of organ transplants across Canada.Methods:We performed a multicentre, prospective cohort study of all recipients of solid organ transplants from 9 transplant programs in Canada who received a diagnosis of COVID-19 from March 2020 to November 2021. Data were analyzed to determine risk factors for oxygen requirement and other metrics of disease severity. We compared outcomes by organ transplant type and examined changes in outcomes over time. We performed a multivariable analysis to determine variables associated with need for supplemental oxygen.Results:A total of 509 patients with solid organ transplants had confirmed COVID-19 during the study period. Risk factors associated with needing (n = 190), compared with not needing (n = 319), supplemental oxygen included age (median 62.6 yr, interquartile range [IQR] 52.5–69.5 yr v. median 55.5 yr, IQR 47.5–66.5; p < 0.001) and number of comorbidities (median 3, IQR 2–3 v. median 2, IQR 1–3; p < 0.001), as well as parameters associated with immunosuppression. Recipients of lung transplants (n = 48) were more likely to have severe disease with a high mortality rate (n = 15, 31.3%) compared with recipients of other organ transplants, including kidney (n = 48, 14.8%), heart (n = 1, 4.4%), liver (n = 9, 11.4%) and kidney–pancreas (n = 3, 12.0%) transplants (p = 0.02). Protective factors against needing supplemental oxygen included having had a liver transplant and receiving azathioprine. Having had 2 doses of SARS-CoV-2 vaccine did not have an appreciable influence on oxygen requirement. Multivariable analysis showed that older age (odds ratio [OR] 1.04, 95% confidence interval [CI] 1.02–1.07) and number of comorbidities (OR 1.63, 95% CI 1.30–2.04), among other factors, were associated with the need for supplemental oxygen. Over time, disease severity did not decline significantly.Interpretation:Despite therapeutic advances and vaccination of recipients of solid organ transplants, evidence of increased severity of COVID-19, in particular among those with lung transplants, supports ongoing public health measures to protect these at-risk people, and early use of COVID-19 therapies for recipients of solid organ transplants.

Recipients of solid organ transplants take life-long immunosuppressive agents to prevent rejection. In Canada, an estimated 3000 transplant procedures are performed annually and 40 000 people are living with a transplant. Early studies from Europe and the United States suggested that transplant recipients were at greater risk of severe COVID-19, with a two- to fivefold greater mortality than the general population.13 It is unclear whether the increased risk is owing to multiple comorbidities, immunosuppression or a combination of both factors.Initial trials of therapeutics for SARS-CoV-2, including remdesivir, dexamethasone and tocilizumab, did not formally include transplant recipients.46 Similarly, pivotal studies of the SARS-CoV-2 vaccines did not include immunocompromised populations.7,8 Therefore, the use of COVID-19 therapeutics and SARS-CoV-2 vaccines in the transplant population has been extrapolated from the general population. Commonly used COVID-19 therapies such as dexamethasone and tocilizumab may place transplant recipients at risk of over-immunosuppression, which may result in secondary infections. In addition, withdrawal of standard immunosuppression may result in organ rejection.Previous cohort studies of transplant recipients with COVID-19 have primarily focused on the early phase of the pandemic, when therapeutics and vaccinations were limited.2,9,10 These have generally been single-centre studies with short-term follow-up. Canadian data may differ from that of other countries owing to differences in timing and strategy of vaccine rollouts, as well as use and availability of certain therapeutics. Moreover, current data are limited with regard to longer-term outcomes of COVID-19 in transplant recipients up to 90 days postinfection, especially for the development of graft rejection.We sought to determine factors associated with severe COVID-19 outcomes, to estimate the impact of available therapeutics on COVID-19 severity and to determine whether disease severity changed over the course of the pandemic among recipients of solid organ transplants from 9 centres in Canada.  相似文献   

5.
6.
Hyperactivation of the complement system, a major component of innate immunity, has been recognized as one of the core clinical features in severe covid-19 patients. However, how the virus escapes the targeted elimination by the network of activated complement pathways still remains an enigma. Here, we identified SARS-CoV-2–encoded ORF8 protein as one of the major binding partners of human complement C3/C3b components and their metabolites. Our results demonstrated that preincubation of ORF8 with C3/C3b in the fluid phase has two immediate functional consequences in the alternative pathway; this preincubation inhibits factor I–mediated proteolysis and blocks factor B zymogen activation into active Bb. ORF8 binding results in the occlusion of both factor H and factor B from C3b, rendering the complexes resistant to factor I–mediated proteolysis and inhibition of pro-C3-convertase (C3bB) formation, respectively. We also confirmed the complement inhibitory activity of ORF8 in our hemolysis-based assay, where ORF8 prevented human serum–induced lysis of rabbit erythrocytes with an IC50 value of about 2.3 μM. This inhibitory characteristic of ORF8 was also supported by in-silico protein-protein docking analysis, as it appeared to establish primary interactions with the β-chain of C3b, orienting itself near the C3b CUB (C1r/C1s, Uegf, Bmp1) domain like a peptidomimetic compound, sterically hindering the binding of essential cofactors required for complement amplification. Thus, ORF8 has characteristics to act as an inhibitor of critical regulatory steps in the alternative pathway, converging to hasten the decay of C3-convertase and thereby, attenuating the complement amplification loop.  相似文献   

7.
COVID-19 has swept globally and Pakistan is no exception. To investigate the initial introductions and transmissions of the SARS-CoV-2 in Pakistan, we performed the largest genomic epidemiology study of COVID-19 in Pakistan and generated 150 complete SARS-CoV-2 genome sequences from samples collected from March 16 to June 1, 2020. We identified a total of 347 mutated positions, 31 of which were over-represented in Pakistan. Meanwhile, we found over 1000 intra-host single-nucleotide variants (iSNVs). Several of them occurred concurrently, indicating possible interactions among them or coevolution. Some of the high-frequency iSNVs in Pakistan were not observed in the global population, suggesting strong purifying selections. The genomic epidemiology revealed five distinctive spreading clusters. The largest cluster consisted of 74 viruses which were derived from different geographic locations of Pakistan and formed a deep hierarchical structure, indicating an extensive and persistent nation-wide transmission of the virus that was probably attributed to a signature mutation (G8371T in ORF1ab) of this cluster. Furthermore, 28 putative international introductions were identified, several of which are consistent with the epidemiological investigations. In all, this study has inferred the possible pathways of introductions and transmissions of SARS-CoV-2 in Pakistan, which could aid ongoing and future viral surveillance and COVID-19 control.  相似文献   

8.
9.
This study aimed to examine the distribution of gastrointestinal parasitic infections in domestic pigs in the Republic of Korea. From May 2020 to October 2021, 364 pig fecal samples were collected from 75 farms in 7 Provinces and microscopically examined. A total of 170 (46.7%) pigs were infected with at least one of the following parasites: Balantioides coli, strongyles, Ascaris suum, Trichuris suis, and coccidia. By parasite species, B. coli, strongyles, A. suum, T. suis, and coccidia oocysts or eggs were detected in 144 (39.6%), 24 (6.6%), 14 (3.8%), 4 (1.1%), and 1 (0.3%) samples, respectively. One hundred fifty-four, 15, and 1 cases showed single, double, and triple infections, respectively. Of the swine fecal samples from 75 farms, 69 specimens (92.0%) were infected with 1 or more parasites. All surveyed farms across the country exhibited a positive rate of over 30%, among which the highest positive rate was 65.0% in Chungcheongnam-do, and Jeollabuk-do was followed by 61.9%. Winter showed a statistically lower prevalence than other seasons. This study showed that gastrointestinal parasites are prevalent in pigs in Korea, although the diversity of parasites is low.  相似文献   

10.
11.
12.
This Editorial describes both the motivation for, and the five articles appearing in, the Issue Focus dedicated to the 2nd Costa Rica Biophysics Symposium which was held in March 2021. Some recent history about both the symposium and developments in science occurring within Costa Rica is described. 

The Costa Rica Biophysics Symposium was conceived as a forum for faculty, scholars and students interested on cutting-edge topics in biophysics and related fields. Following the success of the first event organized in 2019 (Solís et al (2020), the second edition of the symposium took place on March 2021 with the support of the Academia Nacional de Ciencias de Costa Rica (ANC, National Academy of Sciences of Costa Rica), the International Union of Pure and Applied Biophysics (IUPAB), the German Society of Biophysics (DGfB), and the Universidad Nacional of Costa Rica (UNA). The symposium aimed to reinforce and enhance the novel network of investigators established in the 2019 event. Participation of Costa Rican presenters, either located in the country or abroad, and foreign scientists from the USA, Germany, France, and Switzerland (Solís et al. (2021a) translated into an expansion and internationalization of the previous network. Moreover, the symposium attracted a broad international audience, which increases the opportunities of further international collaboration.The meeting was organized into 14 presentations and one keynote lecture. It was attended by researchers of the three main universities of Costa Rica: Universidad Nacional (UNA), Universidad de Costa Rica (UCR) and Tecnológico de Costa Rica (TEC). Presenters from international universities were also present, including UT Southwestern Medical Center, USA; Klinikum Nürnberg Medical School, Germany; École Polytechnique Fédérale de Lausanne, Switzerland; Institut de Neurosciences de Montpellier, France; University of California Berkeley, USA; and The University of Chicago, USA. The topics presented in the symposium were diverse and covered cutting-edge biophysical research areas. The presentations ranged from channel electrophysiology, machine learning focused on cellular microscopy, prediction of protein–protein interactions, channelopathies and novel biophysical techniques, among others (Solís et al., 2021a). Furthermore, each lecture was followed by questions from the audience, allowing discussion, engagement and interaction between researchers in spite of the limitations of a virtual symposium. The closing event for the symposium was a lecture by the world-renowned biophysicist Francisco Bezanilla from the University of Chicago, who engaged the audience into a master presentation of his vast research on protein voltage-sensor domains (VSD) with a focus on his recent work on the non-canonical mechanisms for VSD-mediated regulation of pore domains in voltage-gated potassium channels (Carvalho-de-Souza and Bezanilla 2019). After the consequent discussion, the symposium finished with a networking activity, where audience and presenters were able to socialize and share experiences.  相似文献   

13.
14.
The second World Neglected Tropical Diseases (NTDs) Day was celebrated on 30 January 2021. To mark the occasion, the World Health Organization (WHO) launched its roadmap for NTDs for the period 2021 to 2030, which is aimed at increasing prevention and control of these too-long neglected diseases. Described here is a global overview on past achievements, current challenges, and future prospects for the WHO NTDs roadmap 2021–2030.  相似文献   

15.
SYNOPSIS. Monolayers of bovine kidney cells were overlaid with Eimeria magna sporozoites and observed with phase-contrast optics until penetration of the cells by the parasites had begun. Cells and penetrating parasites were fixed with glutaraldehyde and OsO4-containing ruthenium red, dehydrated, and embedded in situ. Cells being penetrated were selected for study in the electron microscope. The lack of intracellular staining with ruthenium red and intact plasmalemmas of cells being penetrated, was accepted as evidence that the sporozoites did not disrupt the plasma membranes. The sporozoite caused invagination of the host cell plasmalemma until the parasite was entirely within the cell, after which the invagination was sealed off by short pseudopodia enclosing the sporozoite within a membrane-lined vacuole inside the cell. Often myelin-forms, apparently of host cell origin, were seen in the space between the sporozoite and the cell.  相似文献   

16.
17.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification–mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus–host protein–protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.  相似文献   

18.
Understanding the core replication complex of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are nonstructural protein 14 (NSP14), a bifunctional enzyme with an N-terminal 3′-to-5′ exoribonuclease (ExoN) and a C-terminal N7-methyltransferase, and its accessory protein, NSP10. The difficulty in producing pure and high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from Escherichia coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe that NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosylhomocysteine. Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analog intermediate of remdesivir does not inhibit NSP14 activity; and second, S-adenosylhomocysteine modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure–function studies of SARS-CoV-2 replication fidelity for the treatment of coronavirus disease 2019.  相似文献   

19.
《PLoS medicine》2021,18(12)
BackgroundIndia began COVID-19 vaccination in January 2021, initially targeting healthcare and frontline workers. The vaccination strategy was expanded in a phased manner and currently covers all individuals aged 18 years and above. India experienced a severe second wave of COVID-19 during March–June 2021. We conducted a fourth nationwide serosurvey to estimate prevalence of SARS-CoV-2 antibodies in the general population aged ≥6 years and healthcare workers (HCWs).Methods and findingsWe did a cross-sectional study between 14 June and 6 July 2021 in the same 70 districts across 20 states and 1 union territory where 3 previous rounds of serosurveys were conducted. From each district, 10 clusters (villages in rural areas and wards in urban areas) were selected by the probability proportional to population size method. From each district, a minimum of 400 individuals aged ≥6 years from the general population (40 individuals from each cluster) and 100 HCWs from the district public health facilities were included. The serum samples were tested for the presence of IgG antibodies against S1-RBD and nucleocapsid protein of SARS-CoV-2 using chemiluminescence immunoassay. We estimated the weighted and test-adjusted seroprevalence of IgG antibodies against SARS-CoV-2, along with 95% CIs, based on the presence of antibodies to S1-RBD and/or nucleocapsid protein. Of the 28,975 individuals who participated in the survey, 2,892 (10%) were aged 6–9 years, 5,798 (20%) were aged 10–17 years, and 20,285 (70%) were aged ≥18 years; 15,160 (52.3%) participants were female, and 21,794 (75.2%) resided in rural areas. The weighted and test-adjusted prevalence of IgG antibodies against S1-RBD and/or nucleocapsid protein among the general population aged ≥6 years was 67.6% (95% CI 66.4% to 68.7%). Seroprevalence increased with age (p < 0.001) and was not different in rural and urban areas (p = 0.822). Compared to unvaccinated adults (62.3%, 95% CI 60.9% to 63.7%), seroprevalence was significantly higher among individuals who had received 1 vaccine dose (81.0%, 95% CI 79.6% to 82.3%, p < 0.001) and 2 vaccine doses (89.8%, 95% CI 88.4% to 91.1%, p < 0.001). The seroprevalence of IgG antibodies among 7,252 HCWs was 85.2% (95% CI 83.5% to 86.7%). Important limitations of the study include the survey design, which was aimed to estimate seroprevalence at the national level and not at a sub-national level, and the non-participation of 19% of eligible individuals in the survey.ConclusionsNearly two-thirds of individuals aged ≥6 years from the general population and 85% of HCWs had antibodies against SARS-CoV-2 by June–July 2021 in India. As one-third of the population is still seronegative, it is necessary to accelerate the coverage of COVID-19 vaccination among adults and continue adherence to non-pharmaceutical interventions.

Manoj Murhekar and co-workers report on the seroprevalence of anti-SARS-CoV-2 antibodies in India.  相似文献   

20.
为了解深圳境外输入的新型冠状病毒(SARS-CoV-2)的遗传特征,本研究对2021年2月六株境外输入的SARS-CoV-2毒株进行了高通量测序与基因组序列分析.测序获得的六株SARS-CoV-2毒株基因组长度分别为29 450 nt、28 936 nt﹑28 875 nt、29 855 nt、29 146 nt 和29 528 nt.根据"Pango lineages"分型法,三个来自肯尼亚、南非和柬埔寨的毒株属于B.1.1.7系(VOC-202012/01),一个来自美国的毒株属于B.1.2系(美国谱系),两个来自南非和肯尼亚的毒株属于B.1.351系(20H/501Y.V2).与武汉毒株Wuhan-Hu-1(NC_045512.2)比较,B.1.1.7系毒株的刺突蛋白(S)中发现了多达10个氨基酸的变异,B.1.2系毒株的S蛋白仅发现一个氨基酸的变异,B.1.351系毒株的S蛋白中发现了多达11个氨基酸的变异.来自柬埔寨的一株B.1.1.7系毒株的S蛋白中发现了三个变异(H69S,V70I与Y144V)与另外两个B.1.1.7系毒株中的变异(H69del,V70del与Y144del)不同.六个毒株在ORF1b上都表现出了 P314L的变异,在S蛋白上都表现出了 D614G的变异.2021年2月深圳输入了传染性更强的B.1.1.7英国变异株和B.1.351南非变异株.境外输入的SARS-CoV-2变异株存在引起本地暴发与流行的风险,需持续对境外输入的SARS-CoV-2毒株进行分子监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号