首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell lineage and determination of cell fate in ascidian embryos   总被引:9,自引:0,他引:9  
A detailed cell lineage of ascidian embryos has been available since the turn of the century. This cell lineage was deduced from the segregation of pigmented egg cytoplasmic regions into particular blastomeres during embryogenesis. The invariant nature of the cell lineage, the segregation of specific egg cytoplasmic regions into particular blastomeres, and the autonomous development of most embryonic cells suggests that cell fate is determined primarily by cytoplasmic determinants. Modern studies have provided strong evidence for the existence of cytoplasmic determinants, especially in the primary muscle cells, yet the molecular identity, localization, and mode of action of these factors are still a mystery. Recent revisions of the classic cell lineage and demonstrations of the lack of developmental autonomy in certain embryonic cells suggest that induction may also be an important mechanism for the determination of cell fate in ascidians. There is strong evidence for the induction of neural tissue and indirect evidence for inductive interactions in the development of the secondary muscle cells. In contrast to the long-accepted dogma, specification of cell fate in ascidians appears to be established by a combination of cytoplasmic determinants and inductive cell interactions.  相似文献   

3.
Dorsal-ventral (D-V) polarization in Xenopus eggs and embryos is achieved by passing through a series of complicated phenomena such as initial specification of the polarity before first cleavage, establishment of polarity during cleavage stages resulting in an acquisition of a unique developmental capacity by each blastomere, regional differentiation of mesoderm, and finally neural induction by Spemann's organizer. In order to gain an insight into basic mechanisms which govern D-V polarization, experimental modifications or perturbations of the body axis of embryos, including physical or chemical treatments of eggs, altered orientation of eggs under the normal gravity, centrifugation, manipulation of blastomeres, cytoplasmic withdrawal, and bisection or partial ligation of fertilized eggs are reviewed: all data are consistent with the concept that a cytoplasmic activity which becomes localized in the dorsal side of the egg is responsible or indispensable for the establishment of the D-V axis. The cytoplasmic activity is tentatively called "anterodorsal structure-forming activity." A model which explains the specification, establishment, and realization of D-V polarity in Xenopus laevis is proposed.  相似文献   

4.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

5.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

6.
Why Myc? An Unexpected Ingredient in the Stem Cell Cocktail   总被引:1,自引:0,他引:1  
Screening cocktails of candidate genes for induction of pluripotency and self-renewal in nonstem cells has identified a surprising new embryonic stem cell regulator, the myc proto-oncogene. Here the possible mechanisms by which myc controls self-renewal and pluripotency are discussed.  相似文献   

7.
Cortisol induces glutamine synthetase (GS) in neural retina tissue of chick embryos. GS induction represents a characteristic feature of embryonic retina differentiation. However, if the tissue is dissociated into single cells, the dispersed cells are not inducible for GS. We report that cell dispersion results in a rapid and marked reduction in the level of cortisol-binding cytoplasmic receptors. This reduction persists if the cells are maintained in a dispersed state. However, if the cells are reaggregated and they reconstruct tissue-like contacts and architecture, the level of cortisol receptors increases, and so does inducibility for GS. The results indicate that, in the embryonic neural retina histotypic cell contacts and interactions are involved in regulating the level of cortisol receptors. We propose that cell contact-dependent signals from the cell surface may modulate levels of cytoplasmic cortisol receptors necessary for GS induction.  相似文献   

8.
c-Abl is a non-receptor tyrosine kinase which is localized both in the nucleus and cytoplasm, and is involved in the regulation of cell growth, survival and morphogenesis. Although c-Abl nuclear function has been extensively studied, recent data also indicate an important role in cytoplasmic signalling through mitogenic and adhesive receptors. Here, we review the mechanisms by which growth factors promote cytoplasmic c-Abl activation and signalling and its function in the induction of DNA synthesis, changes in cell morphology and receptor endocytosis. The importance of de-regulated c-Abl cytoplasmic signalling in solid tumours is also discussed.  相似文献   

9.
Ultrastructural aspects of the early embryonic development of the aspidogastrean Aspidogaster limacoides are described and their phylogenetic implications discussed. Whereas the proximal regions of the uterine lumen usually contain unembryonated eggs or eggs with early embryos, the posterior or distal regions of the uterus are filled with eggs containing a fully-developed cotylocidium. The eggs of A. limacoides can be classified as polylecithal due to the presence of numerous vitellocytes which accompany each fertilized oocyte or ovum during egg formation. The results of the study are described in details under six headings: (1) general characteristics of the intrauterine eggs; (2) eggshell and operculum formation; (3) unembryonated eggs; (4) zygote formation and early cleavage divisions; (5) embryonic envelope formation; and (6) early degeneration or apoptosis of some blastomeres. The late differentiation of the operculum, possible functions of GER-bodies, and the early degeneration of vitellocytes and some blastomeres in this species are compared, drawn and discussed with corresponding observations reported for other parasitic Platyhelminthes. The most important differences are apparent in the number of egg envelopes and their mode of formation in A. limacoides compared with previous reports for both digeneans and cestodes. The results of the present TEM study indicate that the three macromeres, resulting from two cleavage divisions, take part in the formation of a single embryonic outer envelope in A. limacoides, and that this takes place at a very early stage of embryogenesis. Their fusion results in the formation of a single continuous cytoplasmic layer surrounding the early embryo, which is composed of only a small number of undifferentiated blastomeres. The early separation of the macromeres may indicate an equal cleavage pattern. These results suggest that the systematic position of the Aspidogastrea among the Platyhelminthes still remains somewhat equivocal, and indicate the need for more studies on the embryonic development, larval morphogenesis and molecular phylogeny for the elucidation of the relationships between this enigmatic group and related taxa.  相似文献   

10.
The silkworm Bombyx mori requires 2-3 months of low temperature (5 degrees C) to terminate embryonic diapause. The molecular mechanisms, however, are unknown. Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) is temperature-dependently activated in the yolk cells of diapausing eggs after 45 days at 5 degrees C, coincident with the acquisition of developmental competence of the embryos at 25 degrees C. Yolk cell granulation and dissociation also begin in diapause eggs incubated at 5 degrees C for 45 days. We used dechorionated egg culture as a model system of diapause termination and observed that both yolk cell dissociation and embryonic development are inhibited by MAPK-ERK kinase (MEK) inhibitor U0126. Therefore, we suggest that ERK in yolk cells has a role in regulating changes in yolk morphology and termination of embryonic diapause in B. mori.  相似文献   

11.
Recent studies have shown that some maternal mRNAs are localized in specific cytoplasmic regions of eggs and embryos and are rearranged in concert with the cytoplasmic movements that fix the embryonic axes. The localization and ooplasmic segregation of mRNA molecules may be mediated by their association with specific egg cytoskeletal domains.  相似文献   

12.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

13.
The effect of ultraviolet (uv) light on embryonic development was examined in the ascidian Styela clava. uv irradiation (3.0 x 10(-3) J mm-2) of the entire surface of fertilized eggs during ooplasmic segregation prevented gastrulation, sensory cell induction, and embryonic axis formation. The uv-irradiated embryos completed ooplasmic segregation and cleaved normally, but vegetal blastomeres did not invaginate at the beginning of gastrulation, sensory cells in the larval brain did not develop tyrosinase or melanin pigment, and the larval tail did not develop. Endoderm, epidermis, and muscle cells differentiated in the uv-irradiated embryos, however, as evidenced by expression of endodermal alkaline phosphatase (AP), an epidermal-specific antigen, and alpha-actin, myosin heavy chain, and acetylcholinesterase (AChE) in muscle cells. Higher doses of uv light (6.0-9.0 x 10(-3) J mm-2) suppressed expression of the epidermal antigen and muscle cell markers, whereas the development of endodermal AP was insensitive. Irradiation at various times between fertilization and the 16-cell stage revealed that gastrulation, sensory cell differentiation, and axis formation are sensitive to uv light only during ooplasmic segregation. Irradiation of restricted regions of the zygote during ooplasmic segregation showed that the uv-sensitive components are localized in the vegetal hemisphere. The absorption characteristics of the uv-sensitive components suggest that they are nucleic acids. The results show that uv-sensitive components that specify gastrulation, sensory cell induction, and embryonic axis formation are localized in the vegetal hemisphere of Styela eggs.  相似文献   

14.
In this investigation, we characterize the embryonic and adult actins and describe the embryonic expression of a muscle actin in the ascidian Styela. Two-dimensional polyacrylamide gel electrophoresis showed that embryos, tadpole larvae, and adult organs contain three major and two minor isoforms of actin. Two of the major isoforms, which are present in the mantle, branchial sac, alimentary tract, and gonads of adults and in eggs, embryos, and heads and tails of tadpoles, are likely to be cytoplasmic actins. The third major isoform, which was enriched in the mantle and branchial sac of adults and localized primarily in the tails of tadpoles, is a muscle actin. The muscle actin isoform was not detected in eggs and early embryos. Radioactivity incorporation studies showed that the cytoplasmic actins were synthesized throughout early development, but muscle actin synthesis was first detected between the 16- and 64-cell stages, 2-3 hr after fertilization. Two lines of evidence indicate that embryonic muscle actin synthesis is directed in part by maternal mRNA. First, poly(A)+ RNA isolated from unfertilized eggs directed the synthesis of muscle actin in an mRNA-dependent reticulocyte lysate. Second, muscle actin was synthesized in anucleate egg fragments. Arguments are also presented that muscle actin synthesis is not directed exclusively by maternal mRNA. It is concluded that embryonic and adult Styela exhibit actin heterogeneity, that one of the actin isoforms is a muscle actin, and that the muscle actin is synthesized during embryogenesis under the direction of maternal and zygotic mRNA.  相似文献   

15.
In the paedogenetic Dipteran insect Heteropeza pygmaea it is possible by physical or chemical means to obtain oocyte-nurse chamber complexes lacking the follicular epithelium. Such oocytes nevertheless complete oogenesis and begin embryonic development. Development of these “naked” eggs has been compared to normal egg development by cinematographic analysis. Eggs which are formed without follicular epithelium are completely spherical in shape and the increase in size which normally occurs during cleavage is much less extensive. Naked eggs show shape changes during the first part of cleavage, in which bulgy cytoplasmic protrusions are formed and disappear continuously. Protrusions which are present during the mitotic divisions are partly cleaved. Cleavage folds occur much earlier in naked eggs than in normal eggs. On the other hand, the duration of the mitotic cycles during nuclear multiplication of normal and naked eggs is similar. Development of naked eggs usually continues for some time after blastoderm formation before degeneration sets in. The events taking place prior to embryonic death are difficult to relate to normal gastrulation events. However, in some cases the morphogenetic movements of naked embryos resemble germ band formation of normal embryos.  相似文献   

16.
The myoplasm of ascidian eggs is a localized cytoplasmic region containing a unique cytoskeletal domain. During ooplasmic segregation, the myoplasm moves first to the vegetal pole and then to the future posterior region of the fertilized egg, where it subsequently enters the muscle cell lineage during cleavage. In the vegetal pole region, the myoplasm defines a developmental center which later controls gastrulation and embryonic axis formation. In the posterior region, the myoplasm defines another developmental center, which specifies muscle cell development. Evidence is described suggesting that the integrity of the myoplasmic cytoskeletal domain is required for normal embryonic functions of the myoplasm.  相似文献   

17.
Various protein kinases are activated in eggs in response to fertilization. We have previously shown that the induction of DNA-dependent protein phosphorylation activity in the sea urchin eggs is triggered by fertilization. The present study demonstrates that the activation of a DNA-dependent serine/threonine kinase in unfertilized eggs of Arbacia punctulata can be achieved without fertilization. Prolonged incubation in seawater resulted in the activation of the eggs with concomitant induction of DNA-dependent protein phosphorylation activity. The activated eggs when fertilized show a slight increase in the phosphorylation activity 10-min post-insemination. The activity gradually declines as the first and second cleavages proceed. The cytoplasmic extracts of the blastulae, gastrulae, and plutei lack the enzyme activity. These findings reveal that not only fertilization but also egg activation serves as a signal for the induction of a DNA-dependent protein phosphorylation activity in sea urchin eggs suggesting that sperm-entry is not required for the induction of the enzyme activity.  相似文献   

18.
Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.  相似文献   

19.
The jewel wasp Nasonia vitripennis is considered the "Drosophila melanogaster of the Hymenoptera." This diminutive wasp offers insect geneticists a means for applying haplo-diploid genetics to the analysis of developmental processes. As in bees, haploid males develop from unfertilized eggs, while diploid females develop from fertilized eggs. Nasonia's advantageous combination of haplo-diploid genetics and ease of handling in the laboratory facilitates screening the entire genome for recessive mutations affecting a developmental process of interest. This approach is currently directed toward understanding the evolution of embryonic pattern formation by comparing Nasonia embryogenesis to that of Drosophila. Haplo-diploid genetics also facilitates developing molecular maps and mapping polygenic traits. Moreover, Nasonia embryos are also proving amenable to cell biological analysis. These capabilities are being exploited to understand a variety of behavioral, developmental, and evolutionary processes, ranging from cytoplasmic incompatibility to the evolution of wing morphology.  相似文献   

20.
In many systems, events participating in cell division are controlled by intracellular pH (pHi). In Xenopus eggs, fertilization is accompanied by an increase in pHi which occurs concomitantly with an increase in protein synthesis and a reinitiation of DNA synthesis, leading the embryo to cell division. In this paper, we have shown that increasing pHi of fertilized eggs from 7.8 to 8.2 by using weak bases produced an arrest in embryonic development. Such a change in pHi was accompanied by a severe inhibition of both protein and DNA syntheses. In order to discriminate between a direct effect of pHi and a pH-independent effect of weak bases on these biosyntheses, the situation was studied in vitro. For this purpose, cytoplasmic extracts were used in which weak base addition did not produce any change in pH. Under these conditions, protein synthesis was not inhibited, suggesting that pH is probably one of the events implicated in the regulation of protein synthesis. On the other hand, DNA synthesis was inhibited by weak bases in vitro, without any change in pH intervening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号