首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.  相似文献   

2.
We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.  相似文献   

3.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

4.
We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.  相似文献   

5.
Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2), or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO) mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects.  相似文献   

6.

Previously, we have reported that the coronary reactive hyperemic response was reduced in adenosine A2A receptor-null (A2AAR?/?) mice, and it was reversed by the soluble epoxide hydrolase (sEH) inhibitor. However, it is unknown in aortic vascular response, therefore, we hypothesized that A2AAR-gene deletion in mice (A2AAR?/?) affects adenosine-induced vascular response by increase in sEH and adenosine A1 receptor (A1AR) activities. A2AAR?/? mice showed an increase in sEH, AI AR and CYP450-4A protein expression but decrease in CYP450-2C compared to C57Bl/6 mice. NECA (adenosine-analog) and CCPA (adenosine A1 receptor-agonist)-induced dose-dependent vascular response was tested with t-AUCB (sEH-inhibitor) and angiotensin-II (Ang-II) in A2AAR?/? vs. C57Bl/6 mice. In A2AAR?/?, NECA and CCPA-induced increase in dose-dependent vasoconstriction compared to C57Bl/6 mice. However, NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? was reduced by t-AUCB with NECA. Similarly, dose-dependent vascular contraction in A2AAR?/? was reduced by t-AUCB with CCPA. In addition, Ang-II enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? with NECA. Similarly, the dose-dependent vascular contraction in A2AAR?/? was also enhanced by Ang-II with CCPA. Further, t-AUCB reduced Ang-II-enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR?/? mice. Our data suggest that the dose-dependent vascular contraction in A2AAR?/? mice depends on increase in sEH, A1AR and CYP4A protein expression.

  相似文献   

7.

Objective

The purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models.

Methods

The expression profiles of chemokines were examined during fracture healing in wild-type (WT) mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1) on primary mouse bone marrow stromal cells (mBMSCs) was evaluated using an in vitro migration assay. MCP-1−/− and C-C chemokine receptor 2 (CCR2)−/− mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT). RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1−/− mice and were evaluated by histological staining and micro-CT.

Results

MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1−/− and CCR2−/− mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1−/− mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1−/− mouse. Conversely, transplantation of MCP-1−/− mouse-derived grafts into host WT mice markedly decreased new bone formation.

Conclusions

MCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.  相似文献   

8.
Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC) than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.  相似文献   

9.
目的:探讨Jmjd3和Ezh2在小鼠骨折愈合过程中的作用。方法:以软骨细胞条件性基因敲除8-10周龄小鼠为研究对象,按基因型随机分为6组,每组5只:其中实验组基因型为Jmjd3~(fl/fl)/Col2a1-Cre ~(ERT2),Ezh2~(fl/fl)/Col2a1-Cre ~(ERT2)或Jmjd~(3fl/fl)/Ezh2~(fl/fl)/Col2a1-Cre ~(ERT2);对照组基因型为Jmjd3~(fl/fl),Ezh2~(fl/fl)或Jmjd3~(fl/fl)/Ezh2~(fl/fl)。建立骨髓腔中插入固定针的稳定性胫骨骨折模型,于骨折术后3天、5天和7天腹腔注射Tamoxifen 3 mg/次/天。各组于术后3W处死,并于骨折部位取材行X线片及组织学检查。结果:通过连续的X线影像学及HE组织切片观察,骨折术后3周是判断小鼠骨折愈合情况的最佳时间点。X线片发现骨折术后3W时软骨细胞内Jmjd3被敲除小鼠的骨折线较对照组明显且骨化骨痂大小和密度均较低,HE切片显示骨化骨痂面积显著低于对照组,而软骨骨痂面积高于对照组;相反,X线片发现Ezh2被敲除小鼠的骨痂面积明显大于对照组,且密度高于对照组,HE组织切片显示Ezh2被敲除的小鼠的骨化骨痂的钙化程度更高,骨小梁更粗更密集。最后,X线片和HE切片均没有发现软骨细胞Jmjd3和Ezh2同时被敲除的小鼠与对照小鼠之间存在明显差异。结论:以软骨细胞特异基因敲除小鼠为基础,我们首次发现Jmjd3具有促进骨折愈合的作用,而Ezh2具有抑制骨折愈合的作用;并且发现Jmjd3和Ezh2对抗调节小鼠的骨折愈合过程,这些发现为骨折愈合治疗提供了新的分子实验基础。  相似文献   

10.
11.
Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor–derived xenografts (PDX) revealed that AR–negative SCPC (AR?SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR–positive castration-resistant adenocarcinomas (AR+ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR? and AR+ PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR?SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR?SCPC cell lines. We conclude that the epigenome of AR? is distinct from that of AR+ castration-resistant prostate carcinomas, and that the AR? phenotype can be reversed with epigenetic drugs.  相似文献   

12.
There is increasing evidence that complement may play a role in bone development. Our previous studies demonstrated that the key complement receptor C5aR was strongly expressed in the fracture callus not only by immune cells but also by bone cells and chondroblasts, indicating a function in bone repair. To further elucidate the role of complement in bone healing, this study investigated fracture healing in mice in the absence of the key complement molecules C3 and C5. C3-/- and C5-/- as well as the corresponding wildtype mice received a standardized femur osteotomy, which was stabilized using an external fixator. Fracture healing was investigated after 7 and 21 days using histological, micro-computed tomography and biomechanical measurements. In the early phase of fracture healing, reduced callus area (C3-/-: -25%, p=0.02; C5-/-: -20% p=0.052) and newly formed bone (C3-/-: -38%, p=0.01; C5-/-: -52%, p=0.009) was found in both C3- and C5-deficient mice. After 21 days, healing was successful in the absence of C3, whereas in C5-deficient mice fracture repair was significantly reduced, which was confirmed by a reduced bending stiffness (-45%; p=0.029) and a smaller callus volume (-17%; p=0.039). We further demonstrated that C5a was activated in C3-/- mice, suggesting cleavage via extrinsic pathways. Our results suggest that the activation of the terminal complement cascade in particular may be crucial for successful fracture healing.  相似文献   

13.
1. The potential neuroprotective actions of the A3 adenosine receptor (A3AR) were investigated using mice with functional deletions of the A3AR (A3AR–/–) in behavioral assessments of analgesia, locomotion, tests predictive of depression and anxiety, and the effects of mild hypoxia on cognition and neuronal survival.2. Untreated A3AR–/– mice were tested in standard behavioral paradigms, including activity in the open field, performance in the hot-plate, tail-flick, tail-suspension, and swim tests, and in the elevated plus maze. In addition, mice were exposed repeatedly to a hypoxic environment containing carbon monoxide (CO). The cognitive effects of this treatment were assessed using the contextual fear conditioning test. After testing, the density of pyramidal neurons in the CA1, 2, and 3 subfields of the hippocampus was determined using standard histological and morphometric techniques.3. A3AR–/– mice showed increased locomotion in the open field test, elevated plus maze (number of arm entries) and light/dark box (number of transitions). However, they spent more time immobile in two different tests of antidepressant activity (Swim and tail suspension tests). A3AR–/– mice also showed evidence of decreased nociception in the hot-plate, but not tail-flick tests. Further, A3AR–/– mice were more vulnerable to hippocampal pyramidal neuron damage following episodes of carbon monoxide (CO)-induced hypoxia. One week after exposure to CO a moderate loss of pyramidal neurons was observed in all hippocampal subfields of both wild-type (A3AR+/+) and A3AR–/– mice. However, the extent of neuronal death in the CA2–3 subfields was less pronounced in A3AR+/+ than A3AR–/– mice. This neuronal loss was accompanied by a decline in cognitive function as determined using contextual fear conditioning. These histological and cognitive changes were reproduced in wild-type mice by repeatedly administering the A3AR-selective antagonist MRS 1523 (5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate 1 mg/kg i.p.).4. These results indicate that pharmacologic or genetic suppression of A3AR function enhances some aspects of motor function and suppresses pain processing at supraspinal levels, while acting as a depressant in tests predictive of antidepressant action. Consistent with previous reports of the neuroprotective actions of A3AR agonists, A3AR–/– mice show an increase in neurodegeneration in response to repeated episodes of hypoxia.  相似文献   

14.
Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels.  相似文献   

15.

Background

Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.

Methods

The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population.

Results

Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.

Conclusion

Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.  相似文献   

16.
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss‐of‐function mouse models in which 32‐week‐old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1?/? mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28‐day fracture repair process in the sFRP1?/? mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss‐of‐function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1?/? mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging. J. Cell. Physiol. 220: 174–181, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Regulation of spermatogenesis involves stage-dependent androgen action on Sertoli cells, but the pathways involved are unclear. We assessed if cyclin D2 could play a role. In rats, Sertoli cell nuclear, stage-dependent immunoexpression of cyclin D2 switched on after Day 10 and persisted through Day 35, but disappeared by adulthood. However, ethane dimethane sulfonate (EDS)-induced testosterone withdrawal in adult rats for 6 days induced stage-dependent cyclin D2 immunoexpression in Sertoli cells, with highest expression at stages IX-XII and nondetectable at stages VI-VIII (opposite that for androgen receptor [AR] immunoexpression). In EDS-treated rats, a single injection of testosterone but not of estrogen reversed this change in 4 h, and testosterone administration from the time of EDS treatment prevented expression of cyclin D2 in Sertoli cells. The EDS-induced changes in cyclin D2 immunoexpression were matched by changes in expression of Ccnd2 (cyclin D2) mRNA in isolated stage-dissected tubules. Treatment of adult rats with flutamide induced stage-dependent cyclin D2 immunoexpression in Sertoli cells within 18 h, and confocal microscopy revealed that immunoexpression of AR and cyclin D2 were mutually exclusive within individual seminiferous tubules in these animals. Sertoli cell-selective ablation of the AR in mice using Cre/loxP technology also resulted in stage-dependent Sertoli cell cyclin D2 immunoexpression. Downstream from cyclin D2 action is retinoblastoma 1 (RB1), a tumor suppressor protein, immunoexpression of which paralleled stage-dependent AR expression in Sertoli cells; RB1 stage specificity disappeared after EDS treatment. These results point to a non-cell cycle role for cyclin D2 and RB1 in mature Sertoli cells in the stage-dependent mechanisms regulated by AR expression and androgen action.  相似文献   

18.

Background

Augmentation of androgen/androgen receptor (AR) pathway may influence chronic hepatitis B (CHB) more likely in males. AR activity is modulated by a polymorphic CAG repeat sequence in AR exon 1. This study aimed to investigate the relationship between serum testosterone levels, CAG repeat numbers and hepatitis B virus (HBV)-related acute liver failure (ALF).

Methods

Three hundred and seventy eight male CHB patients with ALF and 441 asymptomatic HBV carriers (AsCs) were recruited. AR CAG repeats numbers were analyzed. The serum testosterone levels of AsCs, ALFs and patients with hepatitis B flare groups, and sequential serum samples, were assessed quantitatively.

Results

The median CAG repeat (M-CAG) frequency was significantly higher in ALF patients than AsCs (P<0.001). Patients with M-CAG alleles (P<0.001, OR 3.0, 95% CI 2.1–4.2) had the highest risk for ALF. Serum testosterone levels were significantly higher (P<0.001) at hepatitis flare point (8.2±3.0 ng/mL) than inactive phase (6.4±2.0 ng/mL). CHB (8.30±2.71 ng/mL, P = 7.6×10−6) and ALF group (2.61±1.83 ng/mL, P = 1.7×10−17) had significantly different levels of testosterone in comparison with AsCs group (6.56±2.36 ng/mL). The serum testosterone levels sharply decreased from hepatitis flare phase to liver failure phase, and tended to be normal at the recovery phase. Male AsCs with M-CAG alleles had significantly lower serum testosterone levels (P<0.05).

Conclusions

There was a serum testosterone fluctuation during hepatitis B flare and HBV-related ALF, and the median CAG repeats in AR gene exon 1 were associated with lower serum testosterone levels in asymptomatic HBV carriers and an increased susceptibility to HBV-related ALF.  相似文献   

19.
Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhRRANKΔOc/ΔOc (RANKCre/+;AhRflox/flox) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhRRANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhRCtskΔOc/ΔOc (CtskCre/+;AhRflox/flox) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhRRANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.  相似文献   

20.
Genetic deficiency of Cx43 in vivo causes skeletal developmental defects, osteoblast dysfunction and perinatal lethality. To determine the role of Cx43 in the adult skeleton, we developed two models of osteoblast-specific Cx43 gene deletion using Cre mediated replacement of a “floxed” Cx43 allele with a LacZ reporter gene. Cre recombinase expression in osteoblasts was driven by either the osteocalcin OG2 promoter or the 2.3 kb fragment of the Colα1(I) promoter. Homozygous Cx43fl/flmice, in which the Cx43 coding region is flanked by two loxP sites, were crossed with Cre expressing mice in a heterozygous Cx43-null background [Cx43±; Colα1(I)-Cre or Cx43±; OG2-Cre]. Cx43 gene ablation was demonstrated in tissues by selective X-gal staining of cells lining the endosteal surface, and in cultured osteoblastic cells from calvaria using different approaches. Although no LacZ expression was observed in proliferating calvaria cells, before osteoblast differentiation begins, post-proliferative cells isolated from conditional knockout mice [Cx43fl/?; Colα1(I)-Cre or Cx43fl/?; OG2-Cre] developed strong LacZ expression as they differentiated, in parallel to a progressive disappearance of Cx43 mRNA and protein abundance relative to controls. Selective Cre mediated Cx43 gene inactivation in bone forming cells will be useful to determine the role of Cx43 in adult skeletal homeostasis and overcome the perinatal lethality of the conventional null model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号