首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P (SP) participates in acute intestinal inflammation via binding to the G-protein-coupled neurokinin-1 receptor (NK-1R) and release of proinflammatory cytokines from colonic epithelial cells. SP also stimulates cell proliferation, a critical event in tissue healing during chronic colitis, via transactivation of the epidermal growth factor (EGF) receptor (EGFR) and activation of mitogen-activated protein kinase (MAPK). Here we examined the mechanism by which SP induces EGFR and MAPK activation. We used non-transformed human NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) as well as untransfected U373 MG cells expressing high levels of endogenous NK-1R. Exposure of both cell lines to SP (10(-7) m) stimulated EGFR activation (1 min) followed by extracellular signal-regulated protein kinase (ERK1/2) activation (2-5 min). SP-induced ERK1/2 activation was blocked by pretreatment with the metalloproteinase inhibitor Batimastat/GM6001, the EGFR phosphorylation inhibitor AG1478, and the tumor necrosis factor-alpha-converting enzyme (TACE) inhibitor TAPI-1. Pretreatment with antibodies against potential EGFR ligands suggested that transforming growth factor-alpha (TGFalpha), but not the other EGFR ligands EGF, heparin-binding EGF, or amphiregulin, mediates SP-induced EGFR transactivation. SP stimulated TGFalpha release into the extracellular space that was measurable within 2 min, and this release was inhibited by metalloproteinase inhibitors and the TACE inhibitor TAPI-1. SP also induced MAPK-mediated cell proliferation that was inhibited by TACE, matrix metalloproteinase (MMP), EGFR, and MEK1 inhibitors. Thus, in human colonocytes, NK-1R-induced EGFR and MAPK activation and cell proliferation involve matrix metalloproteinases (most likely TACE) and the release of TGFalpha. These signaling mechanisms may be involved in the protective effects of NK-1R in chronic colitis.  相似文献   

2.
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.  相似文献   

3.
《Autophagy》2013,9(5):641-649
Although generally acknowledged as a plasma membrane protein, the epidermal growth factor (EGF) receptor has been found in the nucleus and subcellular organelles. Recently, the mitochondrial localization of the EGF receptor (EGFR) was reported; nevertheless, the molecular mechanism underlying EGFR localization in mitochondria is largely unknown. Using immunofluorescence and immunoelectron microscopy, we observed that EGFR did localize within mitochondria. Moreover, EGFR mitochondrial translocation can be increased by rapamycin treatment in A431 cells and greatly reduced by the presence of 3-methyladenine (3-MA), an inhibitor of autophagy. The reduction of mitochondrial EGFR via autophagy inhibition is further confirmed by small interference RNA (siRNA), through which the essential protein Beclin 1 was depleted. Knocking down Beclin 1 markedly decreased the mitochondrial translocation of EGFR that was induced by rapamycin. We also noticed that the content of mitochondrial EGFR transfer is decreased when the cells are exposed to the apoptotic inducer etoposide. Additionally, either EGF treatment or EGFR knockdown by siRNA results in a greater decline of cell viability in cells possessing more mitochondrial EGFRs. Taken together, we conclude that EGFR mitochondrial localization is regulated by either autophagy or programmed cell death and is correlated with cell survival.  相似文献   

4.
Yue X  Song W  Zhang W  Chen L  Xi Z  Xin Z  Jiang X 《Autophagy》2008,4(5):641-649
Although generally acknowledged as a plasma membrane protein, the epidermal growth factor (EGF) receptor has been found in the nucleus and subcellular organelles. Recently, the mitochondrial localization of the EGF receptor (EGFR) was reported; nevertheless, the molecular mechanism underlying EGFR localization in mitochondria is largely unknown. Using immunofluorescence and immunoelectron microscopy, we observed that EGFR did localize within mitochondria. Moreover, EGFR mitochondrial translocation can be increased by rapamycin treatment in A431 cells and greatly reduced by the presence of 3-methyladenine (3-MA), an inhibitor of autophagy. The reduction of mitochondrial EGFR via autophagy inhibition is further confirmed by small interference RNA (siRNA), through which the essential protein Beclin 1 was depleted. Knocking down Beclin 1 markedly decreased the mitochondrial translocation of EGFR that was induced by rapamycin. We also noticed that the content of mitochondrial EGFR transfer is decreased when the cells are exposed to the apoptotic inducer etoposide. Additionally, either EGF treatment or EGFR knockdown by siRNA results in a greater decline of cell viability in cells possessing more mitochondrial EGFRs. Taken together, we conclude that EGFR mitochondrial localization is regulated by either autophagy or programmed cell death and is correlated with cell survival.  相似文献   

5.
Caveolae-dependent endocytosis has recently been proposed in the uptake of EGF receptor (EGFR) at high concentrations of ligand. Consistently, upon incubation of HEp2 and HeLa cells with methyl-beta-cyclodextrin, we observed a small inhibitory effect on endocytosis of ligated EGFR in HEp2 cells. However, immunoelectron microscopy showed the same relative amount of bound EGF localizing to caveolae on incubation with high and low concentrations of EGF, not supporting rapid recruitment of EGFR to caveolae. Live-cell microscopy furthermore demonstrated that incubating HEp2 cells with high concentrations of EGF did not increase the mobility of caveolae. By RNA-interference-mediated knockdown of clathrin heavy chain in HEp2 and HeLa cells, we found that endocytosis of EGFR was efficiently inhibited both at high and low concentrations of EGF. Our results show that caveolae are not involved in endocytosis of EGF-bound EGFR to any significant degree and that high concentrations of EGF do not further mobilize caveolae.  相似文献   

6.
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.  相似文献   

7.
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti–EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti–EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.  相似文献   

8.
Neural progenitor cells (NPCs) are sensitive to epidermal growth factor (EGF), which is essential for their self-renewal. Recently we showed that high level of connexin43 (Cx43) expression and gap junctional intercellular communication (GJIC) are also required to maintain NPCs in a proliferative state. In this study the connection between EGF/EGFR signalling and Cx43 expression was investigated during proliferation and differentiation of cultured ReNcell VM197 human NPCs. We found that EGF, but not basic fibroblast growth factor (bFGF), strongly stimulated both Cx43 expression and GJIC in proliferating cells. This stimulatory effect was blocked by AG1478, a specific inhibitor for EGFR kinase. Notably, knockdown of Cx43 strongly inhibited the cell proliferation promoted by EGF/EGFR signalling. High sensitivity to EGF was still maintained in differentiated NPCs. Administration of EGF to differentiating cells led to a pronounced increase (9-fold) of Cx43 expression and a re-induction of proliferation. This strong impact of EGF was found to correlate with a surprisingly massive 60-fold up-regulation of EGFR expression in differentiated cells. Our data argue for a mutual regulation between Cx43 expression and EGF/EGFR signalling during self-renewal and differentiation of NPCs.  相似文献   

9.
Previous report showed that epidermal growth factor (EGF) promotes tumor progression. Several studies demonstrated that growth factors can induce heme oxygenase (HO)-1 expression, protect against cellular injury and cancer cell proliferation. In this study, we investigated the involvement of the c-Src, NADPH oxidase, reactive oxygen species (ROS), PI3K/Akt, and NF-κB signaling pathways in EGF-induced HO-1 expression in human HT-29 colon cancer cells. Treatment of HT-29 cells with EGF caused HO-1 to be expressed in concentration- and time-dependent manners. Treatment of HT-29 cells with AG1478 (an EGF receptor (EGFR) inhibitor), small interfering RNA of EGFR (EGFR siRNA), a dominant negative mutant of c-Src (c-Src DN), DPI (an NADPH oxidase inhibitor), glutathione (an ROS inhibitor), LY294002 (a PI3K inhibitor), and an Akt DN inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF caused an increase in c-Src phosphorylation at Tyr406 in a time-dependent manner. Treatment of HT-29 cells with EGF induced an increase in p47phox translocation from the cytosol to membranes. The EGF-induced ROS production was inhibited by DPI. Stimulation of cells with EGF resulted in an increase in Akt phosphorylation at Ser473, which was inhibited by c-Src DN, DPI, and LY 294002. Moreover, treatment of HT-29 cells with a dominant negative mutant of IκB (IκBαM) inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF induced p65 translocation from the cytosol to nuclei. Treatment of HT-29 cells with EGF induced an increase in κB-luciferase activity, which was inhibited by a c-Src DN, LY 294002, and an Akt DN. Furthermore, EGF-induced colon cancer cell proliferation was inhibited by Sn(IV)protoporphyrin-IX (snPP, an HO-1 inhibitor). Taken together, these results suggest that the c-Src, NADPH oxidase, PI3K, and Akt signaling pathways play important roles in EGF-induced NF-κB activation and HO-1 expression in HT-29 cells. Moreover, overexpression of HO-1 mediates EGF-induced colon cancer cell proliferation.  相似文献   

10.
The biophysical mechanism of magnetic fields (MFs) acting on living systems is not clear. Previous research showed that, similar to epidermal growth factor (EGF), MF exposure induced EGF receptor (EGFR) clustering and activated EGFR signaling. In this study, we investigated whether MF exposure induced the changes in physical characteristics of EGF and downstream effects of EGF and EGFR interaction. The phase-interrogation surface plasmon resonance (SPR) sensing analyses showed that 50 Hz MF exposure at 4.0 mT for 1 h induced reversible relative permittivity changes of EGF solution. However, compared with sham-exposed EGF solution, the MF-exposed EGF solution did not affect the binding of EGF to EGFR, nor the cell viability and EGFR clustering in human amniotic epithelial cells (FL cells). Our data suggest that cellular EGFR clustering response to MF exposure might not be a result of changes in relative permittivity of EGF in cell culture solution. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

11.
Activated EGF receptor (EGFR) signaling plays an instrumental role in glioblastoma (GBM) progression. However, how EGFR activation regulates the tumor microenvironment to promote GBM cell invasion remains to be clarified. Here, we demonstrate that the levels of EGFR activation in tumor cells correlated with the levels of macrophage infiltration in human GBM specimens. This was supported by our observation that EGFR activation enhanced the interaction between macrophages and GBM cells. In addition, EGF treatment induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) expression in a PKCϵ- and NF-κB-dependent manner. Depletion of VCAM-1 interrupted the binding of macrophages to GBM cells and inhibited EGF-induced and macrophage-promoted GBM cell invasion. These results demonstrate an instrumental role for EGF-induced up-regulation of VCAM-1 expression in EGFR activation-promoted macrophage-tumor cell interaction and tumor cell invasion and indicate that VCAM-1 is a potential molecular target for improving cancer therapy.  相似文献   

12.
Many cell types display two classes of epidermal growth factor receptor (EGFR) as judged from EGF binding studies; i.e., a major class of low affinity EGFR and a minor class of high affinity EGFR. We have studied their respective contribution to the cascade of events elicited by EGF in human A431 carcinoma cells, using anti-EGFR mAb 2E9. This antibody specifically blocks EGF binding to low affinity EGFR, without activating receptors in intact cells, and thus enables us to study the effects of exclusive EGF binding to high affinity EGFR. We show that blocking of low affinity EGFR by mAb 2E9 has almost no effect on the activation of the receptor protein-tyrosine kinase by EGF, suggesting that EGFR kinase activation occurs exclusively through the subclass of high affinity EGFR (5-10%). In addition, we provide evidence that high affinity EGFR exists both in monomeric and dimeric forms, and that cross-phosphorylation of low affinity EGFR by high affinity EGFR may take place in dimers of both receptor types. We demonstrate that the following early cellular response to EGF are also unimpaired in the presence of mAb 2E9: (a) inositol phosphate production, (b) release of Ca2+ from intracellular stores, (c) rise in intracellular pH, (d) phosphorylation of EGF on threonine residue 654, (e) induction of c-fos gene expression, and (f) alteration in cell morphology. As possible nonspecific side effects, we observed that the EGF induced Ca2+ influx and fluid-phase pinocytosis were inhibited in A431 cells in the presence of mAb 2E9. We conclude, therefore, that the activation of the EGFR signal transduction cascade can occur completely through exclusive binding of EGF to the subclass of high affinity EGFR.  相似文献   

13.
Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.  相似文献   

14.
15.
Increased expressions of fatty acid synthase (FASN) and epidermal growth factor receptor (EGFR) are common in cancer cells. De novo synthesis of palmitate by FASN is critical for the survival of cancer cells via mechanisms independent of its role as an energy substrate. Besides the plasma membrane and the nucleus, EGFR can also localize at the mitochondria; however, signals that can activate mitochondrial EGFR (mtEGFR) and the functions of mtEGFR of cancer cells remain unknown. The present study characterizes mtEGFR in the mitochondria of cancer cells (prostate and breast) and reveals that mtEGFR can promote mitochondrial fusion through increasing the protein levels of fusion proteins PHB2 and OPA1. Activation of plasma membranous EGFR (pmEGFR) stimulates the de novo synthesis of palmitate through activation of FASN and ATP-citrate lyase (ACLy). In vitro kinase assay with isolated mitochondria shows that palmitate can activate mtEGFR. Inhibition of FASN blocks the mtEGFR phosphorylation and palmitoylation induced by EGF. Mutational studies show that the cysteine 797 is important for mtEGFR activation and palmitoylation. Inhibition of FASN can block EGF induced mitochondrial fusion and increased the sensitivity of prostate cancer cells to EGFR tyrosine kinase inhibitor. In conclusion, these results suggest that mtEGFR can be activated by pmEGFR through de novo synthesized palmitate to promote mitochondrial fusion and survival of cancer cells. This mechanism may serve as a novel target to improve EGFR-based cancer therapy.  相似文献   

16.
Particulate atmospheric pollutants interact with the human airway epithelium, which releases cytokines, chemokines, and EGF receptor (EGFR) ligands leading to proinflammatory responses. There is little information concerning the short-term effects of EGFR activation by extracellular ligands on ionic regulation of airway surface lining fluids. We identified in the membrane of human epithelial bronchial cells (16HBE14o(-) line) an endogenous calcium- and voltage-dependent, outwardly rectifying small-conductance chloride channel (CACC), and we examined the effects of EGF on CACC activity. Ion channel currents were recorded with the patch-clamp technique. In cell-attached membrane patches, CACC were activated by exposure of the external surface of the cells to physiological concentrations of EGF without any change in cytosolic Ca(2+) concentration ([Ca(2+)](i)) and inhibited by tyrphostin AG-1478 (an inhibitor of EGFR that also blocks EGF-dependent Src family kinase activation). EGF activation of c-Src protein in 16HBE14o(-) cells was observed, and the signaling pathway elicited by EGFR was blocked by tyrphostin AG-1478. In excised inside-out membrane patches CACC were activated by exposure of the cytoplasmic face of the channels to the human recombinant Src(p60(c-src)) kinase with endogenous or exogenous ATP and inhibited by lambda-protein phosphatase. Secretion of EGFR ligands by epithelial airway cells exposed to pollutants would then elicit a rapid and direct ionic response of CACC mediated by EGFR activation via a Src kinase family-dependent signaling pathway.  相似文献   

17.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

18.
Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a region at carboxy terminus that is highly homologous to Gene-33/Mig-6/RALT. The interaction of ACK1 with EGFR was dependent on the kinase activity or tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 was colocalized with EGFR on EEA-1 positive vesicles upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNAi inhibited ligand-induced degradation of EGFR upon EGF stimulation, suggesting that ACK1 plays an important role in regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin-association (Uba) domain at the carboxy terminus, ACK1 binds to both poly- and mono-ubiquitin. Overexpression of the Uba domain-deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Taken together, our studies suggest that ACK1 senses signal of EGF and regulates ligand-induced degradation of EGFR.  相似文献   

19.
Aldosterone stimulates epidermal growth factor receptor expression   总被引:6,自引:0,他引:6  
The steroid hormone aldosterone plays an important role during pathological tissue modifications, similar to cardiovascular or renal fibrosis. The underlying mechanisms for the pathological actions are not understood. Interaction of aldosterone with the epidermal growth factor (EGF) receptor is an attractive hypothesis to explain pathological tissue remodeling elicited by aldosterone, because (i) mineralocorticoids can sensitize cells for EGF, (ii) mineralocorticoid receptor (MR)-antagonists reduce EGFR-mRNA expression, (iii) EGFR itself supports the development of cardiovascular or renal fibrosis, and (iv) signaling elements involved in the pathological action of aldosterone (similar to ERK1/2 or NFkB) are typical downstream modules during EGF signaling. In addition, an interaction of aldosterone and EGF with respect to ERK1/2 activation has been described. Here we show that aldosterone stimulates EGFR expression in renal tissue of adrenalectomized rats and in human renal primary cell cultures. Furthermore, Chinese hamster ovary (CHO) cells normally devoid of EGFR or MR express EGFR after transfection with human MR (CHO-MR cells) but not after transfection with human glucocorticoid receptor (CHO-GR cells). In CHO-MR cells, EGFR-expression is up-regulated by aldosterone and inhibited by spironolactone. CHO-MR cells but not CHO-GR cells respond with ERK1/2 phosphorylation to EGF exposure. The responsiveness to other peptide hormones was virtually not affected. These data suggest that EGFR is an aldosterone-induced protein and is involved in the manifold (patho)biological actions of aldosterone.  相似文献   

20.
Ascochlorin, a non-toxic prenylphenol compound derived from the fungus Ascochyta viciae, has been shown recently to have anti-cancer effects on various human cancer cells. However, the precise molecular mechanism of this anti-cancer activity remains to be elucidated. Here, we investigated the effects of ascochlorin on hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human epidermoid cervical carcinoma CaSki cells. Ascochlorin inhibited epidermal growth factor (EGF)-induced HIF-1α and VEGF expression through multiple potential mechanisms. First, ascochlorin selectively inhibited HIF-1α expression in response to EGF stimulation, but not in response to hypoxia (1% O(2)) or treatment with a transition metal (CoCl(2)). Second, ascochlorin inhibited EGF-induced ERK-1/2 activation but not AKT activation, both of which play essential roles in EGF-induced HIF-1α protein synthesis. Targeted inhibition of epidermal growth factor receptor (EGFR) expression using an EGFR-specific small interfering RNA (siRNA) diminished HIF-1α expression, which suggested that ascochlorin inhibits HIF-1α expression through suppression of EGFR activation. Finally, we showed that ascochlorin functionally abrogates in vivo tumor angiogenesis induced by EGF in a Matrigel plug assay. Our data suggest that ascochlorin inhibits EGF-mediated induction of HIF-1α expression in CaSki cells, providing a potentially new avenue of development of anti-cancer drugs that target tumor angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号