首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manure samples were collected from 16 organic (ORG) and 9 low-input conventional (LIC) Dutch dairy farms during August and September 2004 to determine the prevalence of the STEC virulence genes stx1 (encoding Shiga toxin 1), stx2 (encoding Shiga toxin 2), and eaeA (encoding intimin), as well as the rfbE gene, which is specific for Escherichia coli O157. The rfbE gene was present at 52% of the farms. The prevalence of rfbE was higher at ORG farms (61%) than at LIC farms (36%), but this was not significant. Relatively more LIC farms were positive for all Shiga toxin-producing E. coli (STEC) virulence genes eaeA, stx1, and stx2, which form a potentially highly virulent combination. Species richness of Enterobacteriaceae, as determined by DGGE, was significantly lower in manure positive for rfbE. Survival of a green fluorescent protein-expressing E. coli O157:H7 strain was studied in the manure from all farms from which samples were obtained and was modeled by a biphasic decline model. The time needed to reach the detection limit was predominantly determined by the level of native coliforms and the pH (both negative relationships). Initial decline was faster for ORG manure but leveled off earlier, resulting in longer survival than in LIC manure. Although the nonlinear decline curve could theoretically be explained as the cumulative distribution of an underlying distribution of decline kinetics, it is proposed that the observed nonlinear biphasic pattern of the survival curve is the result of changing nutrient status of the manure over time (and thereby changing competition pressure), instead of the presence of subpopulations differing in the level of resistance.  相似文献   

2.
Escherichia coli (E. coli) consists of commensal (ComEC) and diarrhoeagenic (DEC) groups. ComEC are detected using traditional culture methods. Conformational steps are performed after culturing if it is required to test for the presence of DEC, increasing cost and time in obtaining the results. The aim of this study was to develop a single-step multiplex polymerase chain reaction (m-PCR) that can simultaneously amplify genes associated with DEC and ComEC, with the inclusion of controls to monitor inhibition. A total of 701 samples, taken from clinical and environmental water sources in South Africa, were analysed with the optimised m-PCR which targeted the eaeA, stx1, stx2, lt, st, ial, eagg, astA and bfp virulence genes. The mdh and gapdh genes were included as an internal and external control, respectively. The presence of the external control gapdh gene in all samples excluded any possible PCR inhibition. The internal control mdh gene was detected in 100 % of the environmental and 85 % of the clinical isolates, confirming the classification of isolates as E. coli PCR positive samples. All DEC types were detected in varying degrees from the mdh positive environmental and clinical isolates. Important gene code combinations were detected for clinical isolates of 0.4 % lt and eagg. However, 2.3 % of eaeA and ial, and 8.7 % of eaeA and eagg were reported for environmental water samples. The E. coli astA toxin was detected as positive at 35 and 17 % in environmental isolates and clinical isolates, respectively. Interestingly, 25 % of the E. coli astA toxin detected in environmental isolates and 17 % in clinical isolates did not contain any of the other virulence genes tested. In conclusion, the optimised single-step 11-gene m-PCR reactions could be successfully used for the identification of pathogenic and non-pathogenic E. coli types. The m-PCR was also successful in showing monitoring for PCR inhibition to ensure correct reporting of the results.  相似文献   

3.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

4.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are clinically significant food-borne pathogens. However, there is a dearth of information on serotype prevalence and virulence gene distribution, data essential for the development of public health protection monitoring and control activities for the meat and dairy industries. Thus, the objective of this study was to examine the prevalence of non-O157 STEC on beef and dairy farms and to characterize the isolates in terms of serotype and virulence markers. Bovine fecal samples (n = 1,200) and farm soil samples (n = 600) were collected from 20 farms throughout Ireland over a 12-month period. Shiga toxin-positive samples were cultured and colonies examined for the presence of stx1 and/or stx2 genes by PCR. Positive isolates were serotyped and examined for a range of virulence factors, including eaeA, hlyA, tir, espA, espB, katP, espP, etpD, saa, sab, toxB, iha, lpfAO157/OI-141, lpfAO113, and lpfAO157/OI-154. Shiga toxin and intimin genes were further examined for known variants. Significant numbers of fecal (40%) and soil (27%) samples were stx positive, with a surge observed in late summer-early autumn. One hundred seven STEC isolates were recovered, representing 17 serotypes. O26:H11 and O145:H28 were the most clinically significant, with O113:H4 being the most frequently isolated. However, O2:H27, O13/O15:H2, and ONT:H27 also carried stx1 and/or stx2 and eaeA and may be emerging pathogens.  相似文献   

5.
Escherichia coli isolates (n = 300) collected from six sites in subtropical Brisbane, Australia, prior to and after storm events were tested for the presence of 11 virulence genes (VGs) specific to diarrheagenic pathotypes. The presence of eaeA, stx1, stx2, and ehxA genes specific for the enterohemorrhagic E. coli (EHEC) pathotype was detected in 56%, 6%, 10%, and 13% of isolates, respectively. The VGs astA (69%) and aggR (29%), carried by enteroaggregative (EAEC) pathotypes, were frequently detected in E. coli isolates. The enteropathogenic E. coli (EPEC) gene bfp was detected in 24% of isolates. In addition, enteroinvasive E. coli (EIEC) VG ipaH was also detected in 14% of isolates. During dry periods, isolates belonging to the EAEC pathotype were most commonly detected (23%), followed by EHEC (11%) and EPEC (11%). Conversely, a more uniform prevalence of pathotypes, EPEC (14%), EAEC (12%), EIEC (10%), EHEC (7%), and ETEC (7%), was observed after the storm events. The results of this study highlight the widespread occurrence of potentially diarrheagenic pathotypes in the urban aquatic ecosystems. While the presence of VGs in E. coli isolates alone is insufficient to determine pathogenicity, the presence of diarrheagenic E. coli pathotypes in high frequency after the storm events could lead to increased health risks if untreated storm water were to be used for nonpotable purposes and recreational activities.  相似文献   

6.
This research developed a PCR method to identify swine fecal pollution in water, using a portion of the STII toxin gene from enterotoxigenic Escherichia coli as the target sequence. This method showed the gene to have a wide-spread geographical distribution and temporal stability; and the primers demonstrated high specificity, sensitivity, and reliability. A total of 110 DNA extracts from different animal fecal and human sewage samples were screened using the primers and no positives resulted. Centrifugation and filtration methods for concentrating E. coli seeded into stream, ocean, secondary effluent, and dairy lagoon waters resulted in detection limits at the femtogram and attogram levels. E. coli with the biomarker seeded into stream, ocean, and secondary effluent waters remained stable for approximately 2 weeks for all water types. Of the farm lagoon and waste samples tested, 94% were positive for the STII trait, regardless of the number of E. coli screened and 100% were positive when 35 E. coli isolates were screened. As the PCR product of the target sequence yielded a single band, the method is applicable to dot blot detection methodology, yielding great accuracy in determining the presence of swine fecal sources.  相似文献   

7.
Enterobacteriaceae-associated blaCTX-M genes have become globally widespread within the past 30 years. Among isolates from Washington State cattle, Escherichia coli strains carrying blaCTX-M (CTX-M E. coli strains) were absent from a set of 2008 isolates but present in a set of isolates from 2011. On 30 Washington State dairy farms sampled in 2012, CTX-M E. coli prevalence was significantly higher on eastern than on northwestern Washington farms, on farms with more than 3,000 adult cows, and on farms that recently received new animals. The addition of fresh bedding to calf hutches at least weekly and use of residual fly sprays were associated with lower prevalence of CTX-M E. coli. In Washington State, the occurrence of human pathogens carrying blaCTX-M genes preceded the emergence of blaCTX-M-associated E. coli in cattle, indicating that these resistance determinants and/or their bacterial hosts may have emerged in human populations prior to their dissemination to cattle populations.  相似文献   

8.
Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli O86:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli O86:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type 1 and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.  相似文献   

9.
Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment. For the first time, using a DNA microarray capable of detecting all currently described virulence genes and commonly found antimicrobial resistance genes, a survey of environmental E. coli isolates from recreational waters was carried out. A high proportion (29%) of 308 isolates from a beach site in the Great Lakes carried a pathotype set of virulence-related genes, and 14% carried antimicrobial resistance genes, findings consistent with a potential risk for public health. The results also showed that another 8% of the isolates had unusual virulence gene combinations that would be missed by conventional screening. This new application of a DNA microarray to environmental waters will likely have an important impact on public health, epidemiology, and microbial ecology in the future.  相似文献   

10.
The presence of Escherichia coli isolates in the environment is a potential source of contamination of food and water supplies. Moreover, these isolates may harbor virulence genes that can be a source of new forms of pathogenic strains. Here, using multiplex PCR, we examined the presence of virulence gene markers (stx1, stx2, eaeA, hlyA) in 1,698 environmental isolates of E. coli and 81 isolates from food and clinical sources. The PCR analysis showed that ~5% (79 of 1,698) of the total environmental isolates and 96% (79 of 81) of the food and clinical isolates were positive for at least one of the genes. Of the food and clinical isolates, 84% (68 of 81 isolates) were positive for all four genes. Of the subset of environmental isolates chosen for further analysis, 16% (13 of 79 isolates) were positive for stx2 and 84% (66 of 79 isolates) were positive for eaeA; 16 of the latter strains were also positive for hlyA. The pathogenic potentials of 174 isolates (81 isolates from food and clinical sources and 93 isolates from environmental sources) were tested by using a cytotoxicity assay based on lactate dehydrogenase release from Vero cells. In general, 97% (79 of 81) of the food and clinical isolates and 41% (39 of 93) of the environmental isolates exhibited positive cytotoxicity. High cytotoxicity values correlated to the presence of stx genes. The majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. Isolates were also tested for sorbitol utilization and were genotyped by ribotyping and by repetitive extragenic palindromic PCR (REP-PCR) as potential means of quickly identifying virulent strains from the environment, but none of these methods could be used to distinguish cytotoxic environmental isolates. Only 31% of the isolates were negative for sorbitol fermentation, and none of the isolates had common ribotypes or REP-PCR fingerprints. This study suggests that overall higher cytotoxicity values correlated with the production of stx genes, and the majority of hly-positive but stx-negative environmental isolates also exhibited a certain degree of cytotoxicity. This study demonstrated that there is widespread distribution of potentially virulent E. coli strains in the environment that may be a cause of concern for human health.  相似文献   

11.
While much evidence supports the view that the total consumption of antimicrobials is the critical factor in selecting resistance, the possibility of resistant isolates and/or genes encoding resistance being transferred among different living communities has raised serious concerns. In the present study, Escherichia coli isolates recovered from faecal samples (n?=?34) of Iberian wolves (Canis lupus signatus) were characterized for their antimicrobial drug susceptibility. Nearly two thirds of the isolates carried resistance to one or more antimicrobial drugs (in a panel of 19 antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. By screening a set of 20 multidrug-resistant E. coli for virulence genes, we found strains positive for cdt, chuA, cvaC, eaeA, paa and bfpA, which was the most common virulence trait. Phylogenetic analyses have shown that the majority of these E. coli strains fall into phylogenetic groups A and B1. In this study, the diversity of extended-spectrum β-lactamase-producing strains was expressed by both polymorphism of the pulsed-field gel electrophoresis patterns and the presence of various resistance and virulence genes profiles. Finding the specific implications of these multi-resistant bacteria (hosting several virulence factors) in wolf conservation is a challenging topic to be addressed in further investigations.  相似文献   

12.
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.  相似文献   

13.
E. coli is one of the major significant pathogens causing mastitis, the most complex and costly diseases in the dairy industry worldwide. Present study was undertaken to isolate, detect the virulence factors, phylogroup, antimicrobial susceptibility and antimicrobial resistance genes in E. coli from cows with clinical mastitis. A total of 68 milk samples comprising 53 from clinical mastitis and 15 from apparently healthy cattle were collected from four different established dairy farms in Bangladesh. E. coli was isolated from the milk samples and identified by PCR targeting malB gene and sequencing of 16S rRNA gene. E. coli isolates were screened by PCR for the detection of major virulence genes (stx, eae and cdt) of diarrheagenic E. coli followed by phylogenetic grouping. Antimicrobial susceptibility of the E. coli isolates was determined by disk diffusion test and E. coli showing resistance was further screened for the presence of antimicrobial resistance genes. E. coli was isolated from 35.8% of the mastitis milk samples but none from the apparently healthy cattle milk. All the E. coli isolates were negative for stx, eae and cdt genes and belonged to the phylogenetic groups A and B1 which comprising of commensal E. coli. Antibiotic sensitivity testing revealed 84.2% (16/19) of the isolates as multidrug resistant. Highest resistance was observed against amoxicillin (94.5%) followed by ampicillin (89.5%) and tetracycline (89.5%). E. coli were found resistant against all the classes of antimicrobials used at the farm level. Tetracycline resistance gene (tetA) was detected in 100% of the tetracycline resistant E. coli and blaTEM-1 was present in 38.9% of the E. coli isolates. Findings of this study indicate a potential threat of developing antimicrobial resistance in commensal E. coli and their association with clinical mastitis. Occurrence of multidrug resistant E. coli might be responsible for the failure of antibiotic therapies in clinical mastitis as well as pose potential threat of transmitting and development of antibiotic resistance in human.  相似文献   

14.
A national survey was conducted to determine the prevalence of Escherichia coli O26, O103, O111, and O145 in feces of Scottish cattle. In total, 6,086 fecal pats from 338 farms were tested. The weighted mean percentages of farms on which shedding was detected were 23% for E. coli O26, 22% for E. coli O103, and 10% for E. coli O145. The weighted mean prevalences in fecal pats were 4.6% for E. coli O26, 2.7% for E. coli O103, and 0.7% for E. coli O145. No E. coli O111 was detected. Farms with cattle shedding E. coli serogroup O26, O103, or O145 were widely dispersed across Scotland and were identified most often in summer and autumn. However, on individual farms, fecal shedding of E. coli O26, O103, or O145 was frequently undetectable or the numbers of pats testing positive were small. For serogroup O26 or O103 there was clustering of positive pats within management groups, and the presence of an animal shedding one of these serogroups was a positive predictor for shedding by others, suggesting local transmission of infection. Carriage of vtx was rare in E. coli O103 and O145 isolates, but 49.0% of E. coli O26 isolates possessed vtx, invariably vtx1 alone or vtx1 and vtx2 together. The carriage of eae and ehxA genes was highly associated in all three serogroups. Among E. coli serogroup O26 isolates, 28.9% carried vtx, eae, and ehxA—a profile consistent with E. coli O26 strains known to cause human disease.  相似文献   

15.
Escherichia coli has commonly been associated with diarrheal illness in humans and animals. Recently, E. albertii has been reported to be a potential pathogen of humans and animals and to be carried by wild birds. In the present study, the prevalence and genetic characteristics of intimin-producing E. coli and E. albertii strains were evaluated in wild birds in Korea. Thirty one of 790 Enterobacteriaceae strains from healthy wild birds were positive for the intimin gene (eaeA) and twenty two of the 31 strains were identified as atypical enteropathogenic E. coli (aEPEC) that did not possess both EAF and bfpA genes. A total of nine lactose non-fermenting coliform bacterial strains were identified as E. albertii by PCR and sequence analysis of housekeeping genes. A total of 28 (90.3%) eaeA-positive strains were isolated from waterfowl. Fifteen aEPEC (68.2%) and two E. albertii (22.2%) strains had a β-intimin subtype and 14 aEPEC strains harboring β-intimin belonged to phylogenetic group B2. AU eaeA-positive E. albertii and 3 aEPEC strains possessed the cytolethal distending toxin gene (cdtB). The eaeA-positive E. coli and E. albertii strains isolated from healthy wild birds need to be recognized as a potential pathogroup that may pose a potential threat to human and animal health. These findings indicate that eaeA-positive E. coli as well as E. albertii can be carried by wild birds, posing a potential threat to human and animal health.  相似文献   

16.
Diarrheagenic Escherichia coli, which may include the enteropathogenic E. coli and the enterohemorrhagic E. coli, are a significant cause of diarrheal disease among infants and children in both developing and developed areas. Disease outbreaks related to freshwater exposure have been documented, but the presence of these organisms in the urban aquatic environment is not well characterized. From April 2002 through April 2004 we conducted weekly surveys of streams in the metropolitan Baltimore, Md., area for the prevalence of potentially pathogenic E. coli by using PCR assays targeting the tir and stx1 and stx2 genes. Coliforms testing positive for the presence of the tir gene were cultured from 653 of 1,218 samples (53%), with a greater prevalence associated with urban, polluted streams than in suburban and forested watershed streams. Polluted urban streams were also more likely to test positive for the presence of one of the stx genes. Sequence analysis of the tir amplicon, as well as the entire tir gene from three isolates, indicated that the pathogenic E. coli present in the stream waters has a high degree of sequence homology with the E. coli O157:H7 serotype. Our data indicate that pathogenic E. coli are continually deposited into a variety of stream habitats and suggest that this organism may be a permanent member of the gastrointestinal microflora of humans and animals in the metropolitan Baltimore area.  相似文献   

17.
Ninety-six class 1 integron-positive and 96 integron-negative Escherichia coli isolates cultured from the water of the Warta River, Poland, were characterized for their phylogenetic group affiliation and for the presence of genes associated with virulence. Most strains belonged to phylogenetic group A, but phylogenetic group affiliation was not related with the presence of integrons. The occurrence of heat-stable toxin gene of enterotoxigenic E. coli, S fimbriae subunit gene sfaS, and siderophore receptor genes, fyuA and iutA, was associated with the presence of class 1 integrons. Moreover, virulence factor score (the total number of virulence-associated genes) was associated with the presence of integrons in groups. The results bring new insight into relations between the presence of integrons in E. coli, virulence traits, as well as phylogenetic group affiliation.  相似文献   

18.
The concentration and prevalence of Escherichia coli O157 in cattle feces at the time of slaughter was studied over a 9-week period from May to July 2002. Fecal samples (n = 589) were collected from the rectums of slaughtered cattle, and the animal-level prevalence rate was estimated to be 7.5% (95% confidence interval [CI], 5.4 to 9.6%) while the group prevalence was 40.4% (95% CI, 27.7 to 53.2%). Of the 44 infected animals detected, 9% were high shedders that contained E. coli O157 at concentrations of >104 CFU g−1. These 9% represented >96% of the total E. coli O157 produced by all animals tested. All isolates possessed the vt2 gene, 39 had the eaeA gene, and a further five had the vt1 gene also. The presence of high-shedding animals at the abattoir increases the potential risk of meat contamination during the slaughtering process and stresses the need for correctly implemented hazard analysis and critical control point procedures.  相似文献   

19.
Escherichia coli is generally considered as a commensal inhabitant of gastrointestinal tract of humans and animals. The aim of this study was to gain insight on the distribution of phylotypes and presence of genes encoding integrons, extended β-lactamases and resistance to other antimicrobials in the commensal E. coli isolates from healthy adults in Chandigarh, India. PCR and DNA sequencing were used for phylogenetic classification, detections of integrase genes, gene cassettes within the integron and extended β-lactamases. The genetic structure of E. coli revealed a non-uniform distribution of isolates among the seven phylogenetic groups with significant representation of group A. Integron-encoded integrases were detected in 25 isolates with class 1 integron-encoded intI1 integrase being in the majority (22 isolates). The gene cassettes identified were those for trimethoprim, streptomycin, spectinomycin and streptothricin. The dfrA12-orfF-aadA2 was the most commonly found gene cassette in intI1 positive isolates. Phenotypic assay for screening the potential ESBL producers suggested 16 isolates to be ESBL producers. PCR detection using gene-specific primers showed that 15 out of these 16 ESBL-producing E. coli harboured the bla CTX-M-15 gene. Furthermore, molecular studies helped in characterizing the genes responsible for tetracycline, chloramphenicol and sulphonamides resistance. Collectively, our study outlines the intra-species phylogenetic structure and highlights the prevalence of class 1 integron and bla CTX-M-15 in commensal E. coli isolates of healthy adults in Chandigarh, India. Our findings further reinforce the relevance of commensal E. coli strains on the growing burden of antimicrobial resistance.  相似文献   

20.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by ≥8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (≤3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号