首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The outstanding effects of potassium deficiency on Japanese mint during winter and rainy seasons were marked accumulation of ammonia, amide and nitrate nitrogen with corresponding decrease in protain ntioen indicating arrested protein synthesis at ammonia- and amide formation stages as these fractions showed large proportion in the pool of soluble-N. The accumulation of soluble-nitrogen could be correlated with high respiration rate. Further, potassium-deficient plants had lowe value of rest-N and tootal N in winter and vice a versa in rainy season. In spite of an increased per cent essential oil content (ml/100 g dry weight), the total essential oil production (ml/plant) was low. In general, rainy season plants had higer percentage of essential oil and total oil/plant but showed lower values of all the forms of nitrogen.  相似文献   

2.
Summary This paper presents the results of an experimental enquiry into the effects of phosphorus deficiency and age on the nitrogen metabolism in component parts of mint plants (Mentha arvensis var.piperascens).Estimation of various nitrogenous fractions i.e. ammoniacal, nitrate, amide, rest, total soluble, total insoluble and total nitrogen were made in leaf, stem and root of mint plants, collected from full-nutrient and phosphorus-deficient cultures, at subsequent stages of the life cycle. The outstanding effect of phosphorus deficiency was noted: an increased accumulation of amides resulting in poor formation of proteins which suggested interference in protein synthesis beyond amide stage. Leaf showed maximum percentage of nitrogen in the insoluble form. The stem served as channel for transport and storage and invariably showed high concentration of soluble nitrogen fractions.  相似文献   

3.
Phosphorus (P) is a major factor limiting the response of carbon acquisition of plants and ecosystems to increasing atmospheric CO2 content. An important consideration, however, is the effect of P deficiency at the low atmospheric CO2 content common in recent geological history, because plants adapted to these conditions may also be limited in their ability to respond to further increases in CO2 content. To ascertain the effects of low P on various components of photosynthesis, white lupin (Lupinus albus L.) was grown hydroponically at 200, 400 and 750 micromol mol(-1) CO2, under sufficient and deficient P supply (250 and 0.69 microM P, respectively). Increasing growth CO2 content increased photosynthesis only under sufficient growth P. Ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) content and activation state were not reduced to the same degree as the net CO2 assimilation rate (A), and the in vivo rate of electron transport was sufficient to support photosynthesis in all cases. The rate of triose phosphate use did not appear limiting either, because all the treatments continued to respond positively to a drop in oxygen levels. We conclude that, at ambient and elevated CO2 content, photosynthesis in low-P plants appears limited by the rate of ribulose biphosphate (RuBP) regeneration, probably through inhibition of the Calvin cycle. This failure of P-deficient plants to respond to rising CO2 content above 200 micromol mol(-1) indicates that P status already imposes a widespread restriction in plant responses to increases in CO2 content from the pre-industrial level to current values.  相似文献   

4.
One-year-old apple cuttings (Malus pumila var.domestica cv. M26) were grown for 6 months in pot culture with and without inoculum of the VA-mycorrhizal fungus (VAMF)Glomus macrocarpum in soil from a long-term fertilizer field experiment with different P availability (20, 210, and 280 mg CAL-extractable P kg−1). The indigenous VAMF propagule density was reduced by 0.5 Mrad X-irradiation. At harvest, non-inoculated and inoculated plants had similar proportions of root length bearing vesicles. Net dry weight of tree cuttings was significantly increased by inoculation only at 20 mg P kg−1 (+62%). Increasing P availability from 210 to 280 mg P kg−1 led to a 4-week depression of shoot elongation rate only in the inoculated plants. Uptake of P was significantly enhanced by inoculation at 20 and 210 mg P kg−1 (+64 and +12%, respectively). On average, inoculated plants had significantly higher concentrations of Zn in leaves and in roots (+16 and +14%, respectively) and of copper in stems and in roots (+13 and +126%, respectively). Proportion of vesicle bearing root length was significantly correlated with root caloric content. A lipid content of 0.9–4.5% in the root dry matter was attributed to the presence of vesicles corresponding to 1.6–8.2% of total root caloric content. As the control plants were also infected, the beneficial effect of VA-mycorrhiza on nutrient uptake and growth of apple cuttings was underestimated at all P levels. Furthermore, VAM-potential at the lowest P level was not fully exploited as onset of infection was most certainly delayed because of a decreased photosynthetic rate due to P deficiency. Energy drain by VAMF-infection was most probably underestimated considerably, due to, among others, loss of infected root cortex during root growth, sampling and staining. It is concluded that apple cuttings rely on VA-mycorrhizal P-uptake at least in low P soils. In high P soils, apple cuttings may profit predominantly from the uptake of Zn and Cu by the fungal symbionts.  相似文献   

5.
In an 18 year old Japanese larch stand, leaf characteristics such as area, weight, gross photosynthetic rate and respiration rate were studied in order to obtain basic information on estimating canopy photosynthesis and respiration. The leaf growth courses in area and weight from bud opening were approximated by simple logistic curves. The growth coefficient for the area growth curve was 0.155–0.175 day−1, while that for the weight growth was 0.112–0.117 day−1. The larger growth coefficient in area growth caused the seasonal change in specific leaf area (SLA) that increased after bud opening to its peak early in May at almost 300 cm2 g−1 and then decreased until it leveled off at about 140 cm2g−1. The change inSLA indicates the possibility that leaf area growth precedes leaf thickness growth. The relationship between the coefficientsa andb of the gross photosynthetic rate (p)-light flux density (1) curve (p=bI/(1+aI)) and the mean relative light flux density (I′/I 0) at each canopy height were approximated by hyperbolic formulae:a=A/(I′/I 0)+B andb=C/(I′/I 0)+D. Leaf respiration rate was also increased with increasingI′/I 0. Seasonal change of gross photosynthetic rate and leaf respiration rate were related to mean air temperature through linear regression on semilogarithmic co-ordinates.  相似文献   

6.
Seasonality in nitrogen (N) and phosphorus (P) concentration in soil and shoots of five Brachystegia-Julbernardia (miombo) woodland trees was studied from September 1991 to March 1993 at two regrowth miombo sites in central Zambia. Shoot growth started in the dry season (September–November) and lasted until April during the 1991/92 season but had virtually ceased by January 1993 during the 1992/93 season. The shoot growing season was associated with low foliar N/P ratios. These ratios were much lower (<5) during the 1991/92 season than in the 1992/93 season (12–15). The increase in foliar N/P ratios after the shoot growing season was caused by a sharp drop in foliar P concentration, apparently due to reabsorption before leaf fall. There were no annual variations in biomass N concentration in contrast to P. During the 1992/93 growing season P concentrations in foliage and wood were a quarter and a third, respectively, of the 1991/ 92 levels. Since the short shoot growing season observed during the 1992/93 season is typical of savanna woodland trees in southern Africa, the high biomass P concentration and longer growing season in 1991/92 season were exceptional and may have been related to reduced competition by shallow rooting herbaceous plants caused by the severe drought of that season.  相似文献   

7.
I. G. Burns 《Plant and Soil》1992,142(2):221-233
A method is described for determining the way in which growth rate varies with plant nutrient concentration using a simple nutrient interruption technique incorporating only 2 treatments. The method involves measuring the changes in growth and nutrient composition of otherwise well-nourished plants after the supply of one particular nutrient has been withheld. Critical concentrations are estimated from the relationship between the growth rate (expressed as a fraction of that for control plants of the same size which remained well-nourished throughout) and the concentration of the growth-limiting nutrient in the plants as deficiency developed. Trials of the method using young lettuce plants showed that shoot growth rate was directly proportional to total N (nitrate plus organic N) concentration, and linearly or near-linearly related to K and P concentration over a wide range; the corresponding relationship for nitrate was strongly curvi-linear. Critical concentrations (corresponding to a 10% reduction in growth rate) determined from these results were similar to critical values calculated from models derived from field data, but were generally higher than published estimates of critical concentration (based on reductions in shoot weight) for plants of a similar size. Reasons for these discrepancies are discussed. Nitrate, phosphate or potassium concentrations in sap from individual leaf petioles were highly sensitive to changes in shoot growth rate as deficiency developed, with the slope of the relationships varying with leaf position, due to differences both in their initial concentration and in the rates at which they were utilized in individual leaves. Each nutrient was always depleted more quickly in younger leaves than in older ones, providing earlier evidence of deficiency for diagnostic purposes. Although the plants were capable of accumulating nitrate, phosphate and potassium well in excess of that needed for optimum dry matter production during periods of adequate supply, the rate of mobilization of these reserves was insufficient to prevent reductions in growth rate as the plants became deficient. This brings into question the validity of the conventional concept that luxury consumption provides a store of nutrients which are freely available for use in times of shortage. The implications of these results for the use of plant analysis for assessing plant nutrient status are discussed.  相似文献   

8.
Many studies worldwide have been done on the effect of medicinal uses of lovage plant but, very little works have been done on its production. In this study the effect of different planting density and soaking seeds in different concentration of melatonin solution as well as their combination treatments on yield, secondary products content and antimicrobial activity of lovage plant were studied. It was observed that using planting space of 15 cm gave the maximum mean values of total phenolic and antioxidant content and essential oil percentage. Using 30 cm planting space gave the maximum mean values of plant height, yield of herb fresh and dry weight per hectare, yield of roots dry weight and essential oil per hectare. While the plant space of 45 cm recorded the maximum mean values of fresh and dry weight of herb and roots fresh weight per plant and chlorophyll content. For melatonin levels, using 100 µM melatonin solution had the minimum mean values of number of days to emergence. While, soaking seeds in 75 µM melatonin solution recorded the best results of all studied parameters. Regarding the combination treatments, measurements comprising of herb fresh and dry weight as well as essential oil yield per hectare showed that the combination treatment of 30 cm between plants in row plus soaking seeds in 75 µM melatonin solution was able to achieve the maximum values of these parameters. While the combination treatment of 15 cm between plants in row plus soaking solution of 75 µM melatonin is recommended for getting the maximum yield of root fresh and dry weight per hectare and the maximum total phenolic and antioxidant contents per herb in both cuts of both studied season. The first major compound of lovage essential oil of herb is α-terpinyle acetate followed by β-Phellandrene. The percentages of these compounds were affected by the applied treatments. The volatile oil of lovage plant exhibits high antibacterial and antifungal properties in the concentrations range of 75–100 µg mL−1.Abbreviation: MBC, minimal bactericidal concentration; MFC, minimal fungicidal concentration  相似文献   

9.
A previous study found that increased phosphorus (P) supply to frequently defoliated white clover plants, growing in a low-P, dry soil, alleviated water stress symptoms and increased plant recovery on rewatering. In this study we determined how these stresses influence white clover growth. Measurements were made of the leaf canopy, stolon infrastructure and root system of the white clover plants growing in a low-P soil. Treatments included the factorial combination of four levels of P supply, two defoliation frequencies and two soil water treatments. White clover growth declined markedly when P-deficient plants were exposed to frequent defoliation and dry soil conditions. Leaf area was more affected than other parameters, in that the combination of stresses reduced leaf area to 2% of maximum observed for infrequently defoliated plants growing in high-P soil, with adequate water. Increased P supply generally increased the growth of all plant parts. Frequently defoliated plants growing in dry soil produced similar or greater leaf mass and leaf area as plants from similar treatments growing in wet soil, when the P supply increased to 50 mg P kg-1 soil. Higher P rates were able to negate the effect of dry soil on these frequently defoliated plants, as a result of larger water and P uptake. Also, the frequently defoliated plants with restricted root growth did not respond to a small increase in P supply (17 mg P kg-1 soil) for the leaf growth, irrespective of whether they were growing in wet or dry soil. Infrequently defoliated plants with greater root growth, compared to frequently defoliated plants, more than doubled their leaf mass with this P treatment.  相似文献   

10.
糖是生物体内主要的碳源,是光合作用的主要产物,可为生物体提供能量,在植物的生长发育过程中起重要作用。本文综述了近年来关于糖类与果树生长发育及品质形成方面的相关研究进展,重点介绍了糖类运输、积累与基因表达、糖信号传导和糖类调控网络等方面的研究进展,并对今后利用分子生物学手段进行果实品质改良等方面的研究方向进行了展望。  相似文献   

11.
The nutritional condition and protein growth rates of Japanese temperate bass larvae and juveniles were studied in relation to prey distribution and feeding habits in the nursery grounds in Chikugo estuary, Ariake Sea, Japan. Samples were collected from a wide spatial area covering the nursery grounds of the fish in March and April 2003. Food habits of the fish were analyzed by examining the gut contents. Fish condition was evaluated by using RNA/DNA ratio and other nucleic acid-based indices and protein growth rates. The nucleic acid contents in individually frozen larvae and juveniles were quantified by fluorometric method. Two distinguished feeding patterns, determined by the distribution of prey copepods, were identified along the nursery ground. The first pattern showed the dependency of the fish on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low saline upper river areas and the second pattern involved a multi-species dietary habit mainly dominated by Acartia omorii, Oithona davisae and Paracalanus parvus. Values of RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices were higher in upstream areas than in the downstream areas. The proportion of the starving fish was higher in the downstream areas than in the upstream areas. Condition of juvenile sea bass was not equal throughout the nursery grounds; fish in the upper river were in better condition than those in the lower estuary. We speculated that utilization of S. sinensis, which appears a suitable prey item and provide a better foraging environment in the upstream nursery ground, is one of the key factors for early survival and growth of Japanese temperate bass larvae and juveniles in the Chikugo estuary.  相似文献   

12.
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.  相似文献   

13.
Japanese barberry (Berberis thunbergii) has been characterized as one of the most widely known and planted exotic shrubs in the United States. It was first introduced to the US in the late 1800s. By 1920 the planting of Japanese barberry was encouraged as an ornamental shrub replacing the common barberry (Berberis vulgaris). Japanese barberry began spreading from cultivation in suburban and selected rural retreats by the 1920s, and had dispersed rapidly throughout the northeast by the 1960s. By the 1970s it was recognized as a problematic invasive in the northeast. It is readily dispersed primarily by birds. Fruit production varies with light level, but even under very low light levels (4% full sun) some seeds are produced. Fruits are dispersed in late fall through late winter. Seed dispersal curves are highly leptokurtic; most seedling are found under or adjacent to adults, but a small number may be found tens of meters from the nearest adult. Japanese barberry thrives under a broad range of light and soil moisture conditions. Significant variation in stem growth can be explained as a function of light level. Even at less than 1% full sun, some positive stem growth can occur. Survival is quite high at intermediate to high light levels, and only under the lowest light levels (<1% full sun) does survival drop significantly. Biomass of Japanese barberry in field plots can be largely explained as a function of light availability and soil moisture. The biomass of co-occurring species is suppressed by Japanese barberry, and recovery is slow in the first year following Japanese barberry removal except under high light levels. Glyphosate (Roundup) applied in early spring at first leaf out, when little else is in leaf, provides an effective means of eradicating Japanese barberry populations.  相似文献   

14.
[目的]通过调查广东省矿泉水和山泉水生产企业水源水、碳后水和成品水中的粪链球菌(Enterococcus faecalis)污染情况,为生产企业微生物控制提供相应的依据.[方法]粪链球菌的检测方法采用稍作修改的GB/T8538-2008/4.53,并运用ERIC-PCR技术对主要污染菌株进行分型.[结果]206份水样中有35份水样检出粪链球菌,其中水源水20份、碳后水13份和成品水2份,水源水、碳后水和成品水的污染率分别为26.3%、20%和3.1%,总污染率为17%.矿泉水和山泉水的总污染率分别为3.8%和25.2%,山泉水、地下水和地表水的水源污染率分别为33.3%和63.6%.ERIC-PCR指纹图谱聚类分析显示35株菌分为3簇,主要污染菌基因型在B簇.[结论]广东省山泉水的粪链球菌污染率明显高于矿泉水的污染率,同时山泉水的水源水污染率中,地表水高于地下水.  相似文献   

15.
16.
  • Based on the elemental composition of major biochemical molecules associated with different biological functions, the ‘growth rate hypothesis’ proposed that organisms with a higher growth rate would be coupled to lower C:N, especially lower C:P and N:P ratios. However, the applicability of the growth rate hypothesis for plants is unclear, especially for shrubs growing under different water supply.
  • We performed an experiment with eight soil moisture levels (soil water content: 4%, 6%, 8%, 13%, 18%, 23%, 26% and 28%) to evaluate the effects of water availability on leaf C:N:P stoichiometry in the shrub Zygophyllum xanthoxylum.
  • We found that leaves grew slowly and favored accumulation of P over C and N under both high and low water supply. Thus, leaf C:P and N:P ratios were unimodally related to soil water content, in parallel with individual leaf area and mass. As a result, there were significant positive correlations between leaf C:P and N:P with leaf growth (u).
  • Our result that slower‐growing leaves had lower C:P and N:P ratios does not support the growth rate hypothesis, which predicted a negative association of N:P ratio with growth rate, but it is consistent with recent theoretical derivations of growth–stoichiometry relations in plants, where N:P ratio is predicted to increase with increasing growth for very low growth rates, suggesting leaf growth limitation by C and N rather than P for drought and water saturation.
  相似文献   

17.
Results are presented from a fertilization experiment with wood bark ash (0, 1, 2, 5, 10, 20 Mg ha-1) applied to prevent and cure visible nutrient disorders of young Scots pine established on a peatland field. 13 years after fertilization, dieback of trees and other symptoms of nutrient disorders were substantially reduced or even eliminated, especially where higher doses had been applied. The volume of the growing stock was more than 70 m3 ha-1 for the highest dose while control plots produced less than 15 m3 ha-1. Vegetation characteristics changed following ash treatments with high ash doses favouring grasses and low ash doses promoting mosses. Some major changes in soil and foliar nutrient concentrations were evident due to ash fertilization. K and B, however, were clearly the most limiting nutrients that could be cycled where high doses of ash were used. This was particularly the case with a dose of 20 Mg ha-1. Decomposition of the topsoil was at its highest on plots with ash doses of 5 and 10 Mg ha-1 ash and at its lowest when the dose was 2 Mg ha-1. This was partly due to differences in the C/N ratio of the soil. All decomposition parameters indicated a high degree of humification in the topsoil. High N content (of organic material), low C/N in the soil and optimum levels of foliar N concentrations suggested sufficient N mineralization for tree growth to have occurred in the soil.  相似文献   

18.
This paper deals with the size, age, and sex structure of population and growth of the Japanese littleneck clam Ruditapes philippinarum in Amursky Bay (Peter the Great Bay, Sea of Japan). One-year-olds and individuals with a shell length less than 19.8 mm were not found in the population under study. The population consisted mostly of 3-4-year-old clams (72.4%) with a shell length of 35–45 mm (67.8%). The maximum recorded age of R. philippinarum was 7 years, and maximum shell length was 52.7 mm. The male to female ratio was approximately 2: 1. Hermaphroditism (2.1%) and parasitic castration (1.4%) were observed. Linear growth rates of clams were found to increase until the age of three years old (11.6 ± 0.6 mm/year). Mollusks reach a commercial size of over 35 mm in shell length in the fourth year of life. The parameters of the von Bertalanffy equation describing group linear growth were L = 56.6 mm, k = 0.302 year?1, and t 0 = 0.468 year. The relationship between the shell length and the wet body weight is described by the equation W = 0.000253L2.954.  相似文献   

19.
九龙江河口区养虾塘沉积物-水界面营养盐交换通量特征   总被引:5,自引:1,他引:5  
杨平  金宝石  谭立山  仝川 《生态学报》2017,37(1):192-203
通过对九龙江河口区陆基养虾塘水样和沉积物样品采集分析及结合室内模拟实验,探讨了虾塘在不同养殖阶段沉积物-水界面营养盐通量时间变化特征及其主要影响因素。虾塘沉积物向上覆水体释放NO_x~--N(NO_2~--N和NO_3~--N)、NH_4~+-N和PO_4~(3-)-P能力均呈现随养殖时间推移而降低的特征。沉积物在养殖中期和后期分别呈现对上覆水体NO_x~--N和PO_4~(3-)-P的吸收现象,但总体表现为释放(平均通量分别为(1.87±1.15)、(1.58±0.52)mg m~(-2)h~(-1)和(1.22±0.62)mg m~(-2)h~(-1))。沉积物-水界面溶解无机氮交换以NH_4~+-N为主(沉积物平均释放通量为(46.18±13.82)mg m~(-2)h~(-1))。沉积物间隙水与上覆水间的营养盐浓度差(梯度)及温度对上述交换通量的时间动态特征具有重要调控作用。研究结果表明养殖初期或中期沉积物较高的无机氮(尤其是NO_2~--N和NH_4~+-N)释放是养殖塘水质恶化的一个极具潜力的污染内源,可能会对虾的健康生长产生负面效应,控制沉积物无机氮释放是养虾塘养殖初期和中期重要的日常管理活动之一。  相似文献   

20.
Essentiality of selenium (Se) for Japanese quail,Coturnix coturnix japonica, was confirmed using a formulated semipurified low-Se diet (basal) (0.05 ppm). Selenium-deficiency symptoms appeared in quails on this diet within 15 d, which corresponded to low levels of hemolysate glutathione peroxidase (GSH-Px) activity. Selenium administration at 0.05 and 2.0 ppm levels resulted in an increase of hemolysate GSH-Px activity by 64 and 116%, respectively, in both short- and long-term experiments. Growth over a 2-mo period increased the hemolysate GSH-Px activity by 120% at each level of dietary Se. A differential response was exhibited by hepatic mitochondrial and soluble GSH-Px activity to Se supplementation, the former increasing progressively with increments of Se at 0.05, 2.0, and 4.0 ppm by 45, 70 and 150%, respectively. The soluble GSH-Px activities of tissues, such as liver, kidney, and testis, and RBC membrane-bound activity remained unchanged in long-term studies at different levels of Se. Replenishment of Se to quails maintained on low-Se diets reflected no change in RBC membrane-bound and liver-soluble GSH-Px activities, although the activity in hemolysate increased consistently with Se. The GSH-Px activity in hemolysate was restored to the levels comparable to those of long-term studies only at Se administration at the 2.0-ppm level. The differential response of mitochondrial and soluble GSH-Px activities to Se and other related observations on mitochondrial functions suggest an additional role for Se in mitochondrial membrane processes and glutathione-related metabolic regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号