首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

2.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

3.
Austrheim  Gunnar 《Plant Ecology》2002,161(2):193-205
Leaf demography and growth of six common, co-occurring woody plant species that varied in stature (tree vs. shrub) and leaf texture (sclerophyllous, coriaceous, malacophyllous) were examined in a subtropical savanna parkland in southern Texas, USA. We tested the hypotheses that, (a) leaves of plants with evergreen canopies would have longer life spans than those of deciduous species; (b) supplementation of soil moisture would decrease leaf life span in both evergreen and deciduous species; (c) species responses to increased soil moisture availability would be inversely related to leaf longevity; and (d) deciduous growth forms would exhibit a greater growth response to increased soil moisture availability than their evergreen counterparts.A variety of seasonal leaf habits (evergreen, winter-deciduous and summer-deciduous canopies) and leaf life spans (median = 66 to 283 days) were represented by the targeted species, but there was no clear relationship between seasonal leaf habit and leaf longevity. Among species with evergreen canopies, median leaf longevity ranged from short (Zanthoxylum fagara = 116 days; Condalia hookeri = 158 days) to long (Berberis trifoliolata = 283 days) but did not exceed 1 yr. In fact, leaf longevity in evergreen shrubs was often comparable to, or shorter than, that of species with deciduous canopies (Ziziphus obtusifolia = 66 days; Diospyros texana = 119 days; Prosopis glandulosa = 207 days). Augmentation of surface soil moisture had no detectable effect on median leaf life span in any species and there was no clear relationship between leaf longevity and species growth responses to irrigation. Contrary to expectations, species with evergreen canopies responded to irrigation by producing more leaf biomass, longer shoots and more leaf cohorts/year than did deciduous species.Species differences in the annual cycle of leaf initiation, leaf longevity and canopy development, combined with contrasts in root distributions and a highly variable climate, may allow for spatial and temporal partitioning of resources and hence, woody species coexistence and diversity in this system. However, the lack of expected relationships between leaf longevity, leaf habit and plant responses to resource enhancement suggests that structure-function relationships and functional groupings developed in strongly seasonal environments cannot be applied with confidence to these subtropical savannas and thorn woodlands.  相似文献   

4.
Morphological (dry mass, DM; surface area, LA; leaf mass per area, LMA), anatomical (leaf thickness, L), phenological (leaf life span, LL), and physiological (net photosynthetic rate, P N) leaf traits of the evergreen species co-occurring in the Mediterranean maquis developing at Castelporziano (Rome) were tested. The correlation analysis indicated that LMA variation was tightly associated with LL variations: Cistus incanus and Arbutus unedo had a short LL (4±1, summer leaves, and 11±1 months, respectively) and low LMA (153±19 g m−2) values, Quercus ilex, Phillyrea latifolia, and Pistacia lentiscus high LMA (204±7 g m−2) and long LL (22±3 months), Erica arborea, Erica multiflora, and Rosmarinus officinalis a short LL (9±2 months) and an either high (213±29 g m−2, R. officinalis and E. multiflora) or low (115±17 g m−2, E. arborea) LMA. LMA values were significantly (p≤0.05) correlated with P N (r≥0.68). In the tested species, LMA increased in response to the decrease of the total rainfall during the leaf expansion period. LMA variation was due to the unequal variation of DM and LA in the considered species. LMA is thus a good indicator of evergreen maquis species capability to respond to climate change, in particular to total rainfall decrease in the Mediterranean basin.  相似文献   

5.
Desert shrubs often accumulate different types of phenolic compounds but what determines the amount and diversity of these compounds is an issue scarcely explored. The aim of this study was to assess differences in the amount and diversity of phenolic compounds in leaves among coexisting shrub species differing in rooting depth and leaf turnover. We hypothesized that the diversity and amount of phenolic compounds in leaves of desert shrubs are related to access to soil water through rooting depth, and to leaf turnover. The study was carried out in the Patagonian Monte of Argentina. We collected green leaves of six species representing the dominant shrub morphotypes (tall evergreen, tall deciduous, and medium evergreen shrubs) and assessed lignin concentration and groups of soluble phenols obtained by sequential extraction with ethyl ether, ethyl acetate, and amyl alcohol. We also assessed nitrogen concentration in leaves and leaf mass per unit area (LMA) as traits related to leaf lifespan. The diversity of phenolic compounds was higher in green leaves of tall shrubs with deep rooting depth than in those of medium evergreen shrubs with shallow rooting depth. Diversity of phenolic compounds in green leaves was negatively related to lignin concentration. Evergreen shrubs had higher amount of phenolic compounds in green leaves than deciduous ones and the total amount of phenolic compounds in green leaves was positively related to LMA. We concluded that access to soil water sources and leaf turnover were related to the amount and diversity of phenolic compounds in green leaves of desert shrub species and these results are consistent with those predicted by the resource availability theory for plants from resource-rich and resource-poor habitats.  相似文献   

6.
Leaf structure and physiology are thought to be closely linked to leaf longevity and leaf habit. Here we compare the seasonal variation in leaf hydraulic conductance (kleaf) and water potential of two evergreen tree species with contrasting leaf life spans, and two species with similar leaf longevity but contrasting leaf habit, one being deciduous and the other evergreen. One of the evergreen species, Simarouba glauca, produced relatively short-lived leaves that maintained high hydraulic conductance year round by periodic flushing. The other evergreen species, Quercus oleoides, produced longer-lived leaves with lower kleaf and as a result minimum leaf water potential was much lower than in S. glauca (–2.8 MPa vs –1.6 MPa). Associated with exposure to lower water potentials, Q. oleoides leaves were harder, had a higher modulus of elasticity, and were less vulnerable to cavitation than S. glauca leaves. Both species operate at water potentials capable of inducing 20 (S. glauca) to 50% (Q. oleoides) loss of kleaf during the dry season although no evidence of cumulative losses in kleaf were observed in either species suggesting regular repair of embolisms. Leaf longevity in the deciduous species Rhedera trinervis is similar to that of S. glauca, although maximum kleaf was lower. Furthermore, a decline in leaf water potential at the onset of the dry season led to cumulative losses in kleaf in R. trinervis that culminated in leaf shedding.  相似文献   

7.
Large differences in leaf physiology and morphology between ontogenetic stages of a single woody species have often been observed. Far less attention, however, has been devoted to studying the ontogenetic changes observed in leaf phenology patterns, despite the relevance of leaf phenology in determining the leaf carbon balance and leaf and plant mortality. Leaf emergence patterns and leaf longevity were studied in the saplings and mature trees of the evergreen Quercus ilex and the deciduous Quercus faginea. Our aim here was to analyze and interpret the possible tree-age related differences in these leaf traits. Unlike the adults, in which only one flush of leaf growth was observed, several leaf cohorts were produced within each year in the saplings. Sapling leaves showed a lower mean duration than those of the adults. However, Q. faginea saplings exhibited large plasticity in leaf longevity, which was not seen in the case of Q. ilex. The differences in leaf emergence patterns and in leaf longevity between growth stages seemed to be related to differences in resource availability for leaf production and in leaf mass per unit area, respectively. We propose that the sequential leaf development in saplings may be an important mechanism enabling tree species to cope with resource limitation in the early stages of life.  相似文献   

8.
Evergreen boreal plant species express high variability in their leaf traits. It remains controversial whether this within-species variability is constrained to the same leaf trait relationships as has been observed across species. We sampled leaves of three boreal evergreen woody species along a latitudinal gradient (from 57o56′N to 69o55′N). Leaf longevity (LL) of Pinus sylvestris L. and Vaccinium vitis-idaea L. correlated negatively with mean annual air temperature (MAT), whereas the LL of Ledum palustre L. was not affected by MAT. V. vitis-idaea and L. palustre had a negative relationship between leaf mass per area (LMA) and MAT. In P. sylvestris, the LMA–MAT relationship was positive. A negative correlation between LL and LMA was significant only for P. sylvestris. Leaf nitrogen concentration was positively related to leaf phosphorus concentration in all three species. Leaf potassium concentration was related to nitrogen concentration only in L. palustre, and to phosphorus concentration in P. sylvestris and L. palustre. Our results demonstrate that although within the studied species the variation in some of the leaf traits may have the same degree as interspecific variation, there is no such intercorrelation of leaf traits within the studied species as has been observed across species.  相似文献   

9.

Background and Aims

The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems.

Methods

A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations.

Key Results

It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am.

Conclusions

The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.Key words: Tropical dry forest, karst, leaf habit, hydraulic conductivity, cavitation resistance, leaf water-stress tolerance, wood density, leaf density, phylogenetic independent contrasts  相似文献   

10.
Houter NC  Pons TL 《Oecologia》2012,169(1):33-45
Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species’ gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.  相似文献   

11.
Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.  相似文献   

12.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting.  相似文献   

13.
全球气候变暖强烈影响树线交错带植物的生活史策略,异龄叶大小-出叶强度权衡关系是常绿植物生活史策略的重要内容。以川西树线交错带的岷江冷杉(Abies faxoniana)幼苗为例,研究气候变暖对异龄叶大小与出叶强度关系的影响。通过开顶箱(Open-top chamber, OTC)对川西王朗自然保护区树线交错带的岷江冷杉进行模拟增温,采用标准化主轴估计(Standardized major axis estimation, SMA)方法研究了叶大小(单叶质量、单叶面积)与出叶强度(基于茎生物量、茎体积)间异速生长关系对长期增温的响应及其年际变化。结果表明:使用不同参数表征叶大小与出叶强度得到的结果存在差异;多年生小枝上存在单叶质量-出叶强度的负等速权衡关系,共同主轴随小枝年龄增加而向下漂移;长期增温并不影响单叶质量与出叶强度的异速生长关系,不同年龄小枝的异速生长常数对增温具有差异性响应。增温处理中当年生小枝在相同单叶质量下的出叶强度更低,以换取叶片总数的增加,使小枝具有更大的可塑性而适应增温。本研究提供了岷江冷杉幼苗协调异龄叶大小与出叶强度从而适应长期增温的证据,为评估树木生长随气候变化而加速提供了理论参考。  相似文献   

14.
Xu CY  Griffin KL  Schuster WS 《Oecologia》2007,154(1):11-21
Early leafing and extended leaf longevity can be important mechanisms for the invasion of the forest understory. We compared the leaf phenology and photosynthetic characteristics of Berberis thunbergii, an early leafing invasive shrub, and two co-occurring native species, evergreen Kalmia latifolia and late leafing Vaccinium corymbosum, throughout the 2004 growing season. Berberis thunbergii leafed out 1 month earlier than V. corymbosum and approximately 2 weeks prior to the overstory trees. The photosynthetic capacity [characterized by the maximum carboxylation rate of Rubisco (V cmax) and the RuBP regeneration capacity mediated by the maximum electron transport rate (J max)] of B. thunbergii was highest in the spring open canopy, and declined with canopy closure. The 2003 overwintering leaves of K. latifolia displayed high V cmax and J max in spring 2004. In new leaves of K. latifolia produced in 2004, the photosynthetic capacity gradually increased to a peak in mid-September, and reduced in late November. V. corymbosum, by contrast, maintained low V cmax and J max throughout the growing season. In B. thunbergii, light acclimation was mediated by adjustment in both leaf mass per unit area and leaf N on a mass basis, but this adjustment was weaker or absent in K. latifolia and V. corymbosum. These results indicated that B. thunbergii utilized high irradiance in the spring while K. latifolia took advantage of high irradiance in the fall and the following spring. By contrast, V. corymbosum generally did not experience a high irradiance environment and was adapted to the low irradiance understory. The apparent success of B. thunbergii therefore, appeared related to a high spring C subsidy and subsequent acclimation to varying irradiance through active N reallocation and leaf morphological modifications.  相似文献   

15.
This study assessed the intraspecific variability of senescent leaves of alder (Alnus glutinosa Gaertn.) and the effects of this variability on leaf decomposition in streams. Leaves were collected at five geographically distant locations in Europe. We analyzed 10 batches of leaf samples for seven quantitative leaf traits as well as leaf decomposition rate in coarse and fine mesh bags exposed in a single stream. The geographic origin of leaf samples largely explained the observed variation in litter quality and decomposition rate. Phosphorus (0.034–0.187%) and lignin (3.9–18.7%) concentrations in leaves varied widely. Together, these two traits accurately predicted leaf decomposition rate (r2=84.1%). Intraspecific variation in leaf decomposition rate was within a range similar to that reported for interspecific variation among co-occurring riparian plant species in Europe. Our study demonstrates extensive intraspecific variability in leaf traits on a continental scale, which can have enormous effects on major ecosystem processes such as leaf decomposition.  相似文献   

16.
杨力  王满堂  陈晓萍  孙俊  钟全林  程栋梁 《生态学报》2020,40(21):7745-7754
叶面积与叶生物量的关系对于理解植物叶片的碳收益和投资权衡策略具有重要意义。收益递减假说认为植物的叶面积与叶生物量成显著异速生长关系,其异速生长指数<1.0,但该假说是否适用于不同生活型(常绿与落叶)亚热带木本植物不同冠层高度(上下冠层)当年生小枝的叶片仍不清楚。以江西亚热带常绿阔叶林的69种常绿与落叶木本植物当年生小枝上的叶为研究对象,采用标准化主轴回归估计(standardized major axis estimation,SMA)方法检验不同冠层高度和生活型叶面积与叶生物量的异速生长关系。结果显示:(1)当年生小枝叶生物量在不同冠层高度和生活型的植物中无显著差异(P>0.05),叶面积在常绿和落叶植物中有显著差异(P<0.05),常绿和落叶植物的比叶重存在显著差异(P<0.05),而落叶植物的比叶重在不同冠层高度存在显著差异(P<0.05),同一冠层,常绿植物比叶重显著高于落叶植物(P<0.05);(2)69种植物的叶面积与叶生物量异速生长指数具有物种特异性,60.9%的物种叶面积与叶生物量呈等速生长关系;(3)不同冠层和生活型植物的叶面积与叶生物量呈等速生长关系,但其异速生长常数在不同冠层高度与生活型间存在差异。这些结果表明冠层高度和生活型未改变叶面积-生物量之间的等速生长关系,不支持"收益递减"假说。  相似文献   

17.
Leaf morphology, longevity, and demography were examined in Quercus ilex and Phillyrea latifolia growing in a holm oak forest in Prades mountains (northeast Spain). Four plots (10 × 15 m) of this forest were submitted to an experimental drought during three years (soil moisture was reduced about 15 %). Leaf area, thickness and leaf mass per area ratio (LMA) were measured in sun and shade leaves of both species. Leaf longevity, the mean number of current-year shoots produced per previous-year shoot (Sn/Sn-1), the mean number of current-year leaves per previous-year shoot (Ln/Sn-1), and the percentage of previous-year shoots that developed new ones were measured once a year, just after leaf flushing. LMA and leaf thickness increased since leaf unfolding except in summer periods, when stomatal closure imposed low photosynthetic rates and leaves consumed their reserves. LMA, leaf area, and leaf thickness were higher in Q. ilex than in P. latifolia, but leaf density was higher in the latter species. Drought reduced the leaf thickness and the LMA of both species ca. 2.5 %. Drought also increased leaf shedding up to ca. 20 % in Phillyrea latifolia and decreased it up to ca. 20 % in Q. ilex. In the later species, Sn/Sn-1 decreased by 32 %, Ln/Sn-1 by 41 %, percentage of shoots developed new ones by 26 %, and leaf area by 17 %. Thus the decrease of leaf number and area was stronger in the less drought-resistant Q. ilex, which, under increasingly drier conditions, might lose its current competitive advantage in these Mediterranean holm oak forests.  相似文献   

18.
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost–benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar 15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.  相似文献   

19.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   

20.
Question: Although the restinga vegetation lies adjacent to the species‐rich Atlantic Rainforest, fewer species thrive due to low available resources of the sandy substrate. We asked whether there is a specific set of functional traits related to the ability to attain high dominance in a restinga dominated by a CAM photosynthesis tree. Location: Restinga of Jurubatiba National Park, north of the state of Rio de Janeiro, Brazil. Methods: We chose traits that are commonly used in large screenings, leaf mass per area (LMA), leaf longevity (LL) and leaf nitrogen concentration (LNC). We also measured the functional traits, midday leaf water potential (Ψmin), pressure‐volume curves, nitrogen isotope discrimination (δ15N) and chlorophyll fluorescence. We compared species using ANOVA and ordination analysis. Results: The two most dominant species differed from subordinate species in terms of leaf succulence (SUC) and Ψmin. However, they were also significantly different from each other in LMA, SUC, leaf thickness and LNC. Ψmin and δ15N had the strongest loadings on the third ordination axis, which, despite explaining only 18.2% of total variance, was the only axis reflecting variation in species dominance. Conclusions: Despite high interspecific variation, the most common traits of the leaf economic spectrum were not directly associated with variation in species dominance. In contrast, the bulk modulus of elasticity, Ψmin and δ15N were important not only to track the connection between plant traits and environmental factors, but also between plant traits and community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号