首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A peptide N-glycosidase that catalyzes the hydrolysis of N-linked oligosaccharide chains from glycopeptides and glycoproteins has been purified to homogeneity from almond emulsin and from almond meal. Purification from almond emulsin using ion-exchange chromatography, gel filtration chromatography, and preparative polyacrylamide gel electrophoresis gave an enzyme which was purified more than 700-fold and with a yield of 63%. An alternative procedure, more suitable for efficient large scale purification, used ion-exchange, affinity, and gel filtration chromatography. When purification began with almond emulsin, the enzyme was purified 1200-fold with a 37% yield, while when purification began with almond powder, the enzyme was purified 9000-fold with a yield of 45%. The homogeneous enzyme is stable at 4 degrees C for several months in 10 mM sodium acetate, pH 5.0, buffer. The peptide N-glycosidase is itself shown to be a glycoprotein consisting of a single polypeptide chain with a molecular weight of 66 800 on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Circular dichroism spectra of the native molecule indicate the presence of a high (approximately 80%) alpha-helix content. The amino acid and carbohydrate contents of the enzyme are presented. When a convenient new assay with a turkey ovomucoid glycopeptide as a substrate is used, the enzyme preparation exhibits a broad pH optimum centered between pH 4 and pH 6. The enzyme is readily inactivated by SDS and guanidine hydrochloride, but it is stable in the presence of moderate concentrations of several other protein denaturants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In a previous report we showed that purified bovine placental lactogen (bPL) exists in two isoforms in the 31,000-33,000 Mr range, each with at least five isoelectric variants differing in approximately 2 orders of magnitude in isoelectric points (pI) 4-6. The multiple isoelectric variants are unique to the bovine hormone. In an effort to determine the nature of these variants endo- and exoglycohydrolase digestions were conducted to determine if this hormone was glycosylated. Analysis of peptide/N-glycosidase F and endoglycosidase F digests of radioiodinated bPL on one-dimensional gel electrophoresis showed a Mr decrease from 31,000 to 24,000 and 33,000 to 26,000 for the two isoforms. Digestion with a mixture of neuraminidase plus mixed exoglycosidases resulted in a Mr decrease of 4,000. Digestion with neuraminidase resulted in a Mr decrease of 2,000. Further analysis of peptide/N-glycosidase F- and neuraminidase-treated bPL by two-dimensional gel electrophoresis showed the isoelectric variants shifted from pI 4.4-6.3 to 4.9-8.0. The sialic acid residues on the N-linkage are responsible for the pronounced acidic character of bPL, but do not account for the residual charge heterogeneity as the different isoelectric variants persist after sialic acid removal. The apparent Mr of the protein after removal of N-linked carbohydrate residues is similar to that of PRL and GH. These enzymatic digestion results demonstrate the presence of N-linked complex oligosaccharide residues attached to the beta-amide group of an asparagine residue. Analyses of the sugar content of the molecule were consistent with the presence of one biantennary N-linked and two O-linked carbohydrate chains.  相似文献   

3.
A procedure that combined ion exchange, gel permeation, and insulin-like growth factor-binding protein 3 (IGF-BP-3) affinity chromatography with chromatofocusing and reversed-phase high pressure liquid chromatography was used to isolate high molecular weight precursors of human insulin-like growth factor II (IGF-II) from acetic acid extracts of Cohn fraction IV1. Two precursors had isoelectric points (pI) of 5.1 and 5.4 and apparent Mr values of 15,000 and 11,500, respectively. An apparent Mr = 16,000 RLPG/Ser29 variant of IGF-II was also identified in the acetic acid extracts. Amino-terminal amino acid sequencing of the major E domain-containing peptide that had been isolated from apparent Mr = 15,000 IGF-II (pI 5.1), following its digestion with the endoprotease Lys-C, indicated the carboxyl terminus of this precursor was near or at Lys88. During the sequencing of this peptide, a sharply reduced yield of derivatized amino acid occurred at cycle 10, indicating that Thr75 had been posttranslationally modified, possibly by O-glycosylation. To evaluate this possibility, the 125I-labeled high molecular weight IGF-IIs and their endoprotease-generated peptides were treated with glycosidases, and their effects were determined from the change in relative mobilities of the polypeptide and peptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Neuraminidase treatment of apparent Mr = 15,000 and 11,500 IGF-II reduced their Mr values to a common value of 10,500. When the desialylated precursors of IGF-II were treated with O-glycosidase, but not when treated with N-glycosidase, the Mr values were reduced further to about 10,000. This was the Mr value that would be predicted for an unglycosylated form of precursor IGF-II that had a carboxyl-terminal end at or near Lys88. When the Ser66-Lys88 endoprotease-generated E domain peptides from pI5.1 and 5.4 high Mr IGF-II were treated with the glycosidases, they had relative mobility changes during sodium dodecyl sulfate-polyacrylamide gel electrophoresis that were similar to those of the intact precursors. Finally, the association of O-linked oligosaccharide with the E domain peptide of IGF-II was confirmed by demonstrating the specificity of binding of the Ser66-Lys88 asialoglycopeptide to jackfruit lectin.  相似文献   

4.
Lysophospholipase released from rat platelets upon activation with thrombin has been purified to near homogeneity by sequential column chromatography on heparin-Sepharose, CM-Sephadex C-50, and TSK gel G2000SW. The final preparation showed a single band with a molecular mass of 32,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining. The purified enzyme was heat-labile and inactivated after 5 min at 60 degrees C. It showed a broad pH optimum (pH 6-10) and required a divalent cation, such as Ca2+, for the optimal activity. Appreciable activity, however, was observed in the presence of EDTA. Lysophospholipase activity was inhibited by diisopropylfluorophosphate and dithiothreitol. This enzyme activity was retained by a concanavalin A-Sepharose column and eluted with methyl-alpha-D-mannoside. Treatment of lysophospholipase with peptide: N-glycosidase F gave degraded products, suggesting that this protein contain N-linked carbohydrate chains. The purified enzyme was specific to 1-acyl-sn-glycero-3-phospho-L-serine; none of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and 1-acyl-sn-glycero-3-phospho-D-serine was hydrolyzed appreciably.  相似文献   

5.
The Fc receptor identified by mAb 3G8 (Fc gamma RIII) was isolated by mAb affinity chromatography from 0.5 to 2 x 10(10) neutrophils yielding 33 to 149 micrograms of protein. Iodination of the purified protein identified a polypeptide of broad electrophoretic mobility from Mr 47 to 70 kDa and occasionally a fainter polypeptide at 100 to 130 kDa, which may be dimerized receptor. Two-dimensional isoelectric focusing gel electrophoresis illustrated multiple diffuse polypeptides ranging from a pI of less than 4.7 to 6.5. Treatment of the purified receptor with neuraminidase shifted the mobility of these polypeptides to a more basic pI, ranging from 6 to 8, illustrating the presence of sialic acid residues on Fc gamma RIII. The glycoprotein nature of Fc gamma RIII was characterized by several criteria. The receptor bound to Con A-Sepharose. Treatment of Fc gamma RIII with endoglycosidase H or F, which cleave high mannose and biantennary complex N-linked oligosaccharides, respectively, failed to alter the electrophoretic mobility of the Fc gamma R. Peptide N:glycosidase F, which cleaves all classes of N-linked oligosaccharides, reduced the Mr of Fc gamma RIII by 60% to reveal two poorly resolved polypeptides centered at Mr 25 kDa and ranging from Mr 16 to 28 kDa. Chemical deglycosylation with trifluoromethanesulfonic acid, which cleaves O- and N-linked oligosaccharides except for the asparagine-linked N-acetylglucosamine, reduced the Mr of Fc gamma RIII to 21 to 36 kDa. These results demonstrate that Fc gamma RIII is an acidic complex sialoglycoprotein and suggest that there may be 8 to 15 N-linked oligosaccharide chains on Fc gamma RIII.  相似文献   

6.
A soluble form of tissue-nonspecific alkaline phosphatase was purified to apparent homogeneity from the culture media of Sf9 cells which had been infected with recombinant baculoviruses encoding human tissue-nonspecific alkaline phosphatase (TNSALP). To facilitate purification, an oligonucleotide consisting of 6 tandem codons for histidine and a stop codon was engineered into the TNSALP cDNA. The molecular mass of the enzyme purified through a nickel-chelate column was estimated to be 54 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. That of the native enzyme was 90 kDa as estimated by gel filtration, indicating that the purified soluble TNSALP is dimeric. The enzyme was used for production of antibodies specific for human TNSALP. Immunoblotting analysis showed a single 80-kDa band in the cell homogenate prepared from Saos-2 (human osteosarcoma) cells. However, upon digestion with peptide: N-glycosidase F, the 80-kDa TNSALP of human origin and the soluble enzyme of insect origin migrated to the same position on SDS-polyacrylamide gel, indicating that the size difference between the two enzymes is ascribed to N-linked oligosaccharides. The antibodies prepared against the purified TNSALP were found to be useful also for immunoprecipitation and immunofluorescence studies.  相似文献   

7.
We have previously shown that the cholecystokinin (CCK)-binding proteins in rat pancreatic plasma membranes consist of a major Mr 85,000 and minor Mr 55,000 and Mr 130,000 species as revealed by affinity labeling with 125I-CCK-33 using the cross-linker, disuccinimidyl suberate. The glycoprotein nature of these species was investigated using endoglycosidase F (endo F) and neuraminidase treatment and wheat germ agglutinin-agarose chromatography. Treatment of affinity-labeled membranes with endo F resulted in increased electrophoretic mobilities of all three binding proteins, indicating removal of N-linked oligosaccharide side chains. Endo F treatment of each protein in gel slices indicated the following cleavage relationships: Mr 85,000----65,000; Mr 55,000----45,000; Mr 130,000---- 110,000. Using limiting enzyme conditions to digest each protein contained in excised SDS gel slices, three and four products, respectively, were identified for the Mr 85,000 and 55,000 proteins. Similar treatment of the Mr 130,000 protein revealed only the Mr 110,000 product. These results indicated that the Mr 85,000 protein has at least three, the Mr 55,000 protein has at least four, and the Mr 130,000 protein has at least one, N-linked oligosaccharide side chain(s) on their polypeptide backbone. Neuraminidase treatment of affinity-labeled membranes caused slight increases in the electrophoretic mobilities of all three proteins, indicating the presence of sialic acid residues. Solubilization of affinity-labeled membranes in Nonidet P-40 followed by affinity chromatography on wheat germ agglutinin-agarose revealed that all three CCK-binding proteins specifically interact with this lectin and can be eluted with N-acetyl- D-glucosamine. Analysis of the proteins present in the eluted fractions by silver staining indicated a significant enrichment for proteins having molecular weights corresponding to the major CCK-binding proteins in comparison to the pattern of native membranes. Taken together, these studies provide definitive evidence that the CCK- binding proteins in rat pancreas are (sialo)glycoproteins.  相似文献   

8.
Human seminal transferrin (HSmT) is an iron-containing glycoprotein whose structural properties have not been adequately investigated. The carbohydrate content of the purified glycoprotein amount to 6.1%, and monosaccharide analysis revealed the major oligosaccharide moiety to be of the N-glycoside type. The carbohydrate chains were released from the iron-free form by digestion with peptide N-glycosidase F (PNGase F) in the presence of detergents such as SDS and-octylglucoside. After ethanol precipitation and fractionation on Bio-Gel P-6 and Bio-Gel P-2, the oligosaccharide was further purified on Mono-Q and desalted on Bio-Gel P-2. By 600-MHz1H-NMR spectroscopy, the primary structure of the major N-linked oligosaccharide component was established to be: Abbreviations used HSmT human seminal transferrin - HSrT human serum transferrin - PNGase F peptide-N4-(N-acetyl--glucosaminyl)asparagine amidase-F (E.C. 3.5.1.52), commonly known as peptide N-glycosidase F - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - GLC gas-liquid chromatography - FPLC fast liquid protein chromatography - EDTA ethylenediaminetetraacetic acid, disodium salt - PMFS phenylmethylsulfonyl fluoride - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man, Gal galactose - Fuc fucose  相似文献   

9.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

10.
Glycoproteins associated with one type of flagellar scale (p-scale) isolated from the flagellate green alga Tetraselmis striata (Prasinophyceae) were shown to bind the mannose-specific lectin GNA (Galanthus nivalis agglutinin). Enzymatic deglycosylation of the glycoproteins with N-glycosidase F led to an electrophoretic mobility shift to lower molecular masses in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and abolished GNA-binding strongly indicating that most of the scale-associated glycoproteins contain asparagine-linked oligosaccharide side chains presumably of the high mannose type. To evaluate the significance of N-linked glycoproteins for scale structure and integrity, p-scales were digested with various proteases or extracted with 8 M urea and their ultrastructure and protein composition determined. The results show that while scale-associated N-linked glycoproteins do not determine the overall structure of the scale subunits (which consist of complex polysaccharides), they are apparently involved in mediating linkages between scale subunits; we have tentatively identified one glycoprotein of Mr 280,000 which may link outer scale subunits to one another. In addition, some scale-associated N-linked glycoproteins may provide connections between the layer of p-scales and the underlying flagellar membrane.  相似文献   

11.
We have purified luteinizing hormone/human choriogonadotropin (hCG) receptor from rat ovary by sequential affinity column on wheat germ lectin-Sepharose and hCG-Sepharose chromatography. The purified receptor, previously identified as a single protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Kusuda, S., and Dufau, M.L. (1986) J. Biol. Chem. 261, 16161-16168), was further characterized by radioiodination with 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycouril, and column chromatography on wheat germ lectin-Sepharose. Autoradiography of SDS-PAGE analysis under reducing conditions showed a single radiolabeled band of Mr = 80,000. The radioiodinated receptors treated with peptide:N-glycosidase F migrated at Mr = 54,000. Treatment with neuraminidase alone caused only a minor reduction in molecular weight, and subsequent treatment with endo-alpha-N-acetyl-D-galactosaminidase had little further effect on the receptor. When the radioiodinated receptor was analyzed by fast protein liquid chromatography, a single broad peak was eluted with Mr of approximately 350,000. The higher Mr of radioiodinated receptors than that of native receptors (Mr = 190,000 dimeric form) could be due to the aggregation of labeled molecules. These complexes dissociated into the monomeric form in the presence of SDS. To determine whether the monomers can bind hormone, the purified unlabeled receptors resolved with SDS were electroblotted to nitrocellulose membranes and incubated with 125I-hCG. Autoradiograms of the blots showed a band of monomer (Mr = 78,000) as well as one of dimer (Mr approximately 150,000). These studies have demonstrated that the luteinizing hormone/hCG receptors are predominantly N-linked glycosylated and suggest that the native receptor is a dimer of identical hormone binding subunits associated by noncovalent interactions. Although the individual subunits can bind hormone, it is conceivable that the dimeric form is necessary for signal transduction.  相似文献   

12.
Formyl peptide chemotactic receptors affinity-labeled with N-formyl-Nle-Leu-Phe-Nle-[125I]iodo-Tyr-Lys (where Nle represents norleucine) and ethylene glycol bis(succinimidyl succinate) consist of two isoelectric forms with cell type differences in both apparent size and charge (neutrophils: 55-70 kDa, pI 5.8, and 6.2.; monocytes: 60-75 kDa, pI 5.6 and 6.0; differentiated HL-60 cells: 62-85 kDa, pI 5.6 and 6.0). Endo-beta-N-acetylglucosaminidase F (endo F) cleavage of N-linked oligosaccharides from formyl peptide receptor generates 40-50- and 33-kDa products that can be affinity-labeled. Whereas both pI forms of this receptor from neutrophils are cleaved by endo F to 33-kDa final products, this cleavage does not eliminate pI differences. Tunicamycin decreases expression of formyl peptide receptor on differentiating HL-60 and causes a dose-dependent decrease in size of the major product seen after affinity labeling (0.5 micrograms/ml: 38-48 kDa; 2 micrograms/ml: 32 kDa). Thus, the formyl peptide receptor polypeptide backbone from all three cell types contains at least two N-linked oligosaccharide side chains which contribute to the cell type differences in Mr and are not required for ligand binding. Papain treatment of intact cells generates a membrane-bound formyl peptide receptor fragment that can be affinity-labeled and is of similar size (29-31 kDa) in all three cell types. Endo F treatment of the affinity-labeled papain fragment of formyl peptide receptor does not alter its size, suggesting that this fragment does not contain the N-linked oligosaccharide cleaved by endo F from intact receptor. The results indicate that at least two N-linked oligosaccharide chains are located on the distal 1-3-kDa portion of the receptor polypeptide backbone.  相似文献   

13.
Acetohydroxyacid synthase I from Escherichia coli K-12 has been purified to near homogeneity. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of two polypeptides, one with a molecular weight of 60,000 and one with a molecular weight of 9,500. These two polypeptides were present in constant proportion to each other and to enzyme activity. The molar ratio of the two polypeptides (Mr 9,500:60,000), estimated from stained polyacrylamide gels, was 1. Antisera raised against the 60,000 Mr polypeptide precipitated both the 60,000 and the 9,500 Mr polypeptides from extracts of cells labeled with [35S]methionine. The addition of sodium dodecyl sulfate before immunoprecipitation eliminated the smaller polypeptide, and only the larger one was recovered. The hydrodynamic properties of the native enzyme confirmed a previous report that the largest enzymatically active species has a molecular weight of about 200,000; this species contains both the 60,000- and 9,500-molecular-weight polypeptides.  相似文献   

14.
We investigated the ability of two enzymes, peptide N-glycosidase F (PNGase F) and endo-beta-N-acetylglucosaminidase F (Endo F), to deglycosylate microgram quantities of bovine TSH and its subunits under nondenaturing conditions. One oligosaccharide chain could be selectively removed from the alpha subunit by PNGase F, and all the oligosaccharide chains from both subunits could be removed by Endo F. These methods of enzymatic deglycosylation should permit study of the functional role of each N-linked carbohydrate chain of various glycoprotein hormones.  相似文献   

15.
A P Hansen  S P Sheikh 《FEBS letters》1992,306(2-3):147-150
Affinity labeling using [125I-Tyr36]PYY and homobifunctional affinity crosslinking reagents of the rabbit Y2 receptor for peptide YY(PYY) results in specifically labeled proteins of both M(r) = 50,000 to 60,000 and M(r) = 96,000 to 115,000 [1,2]. In this work the glycoprotein nature of affinity labeled Y2 receptor proteins were investigated by enzymatic deglycosylation using neuraminidase, endoglycosidase F (endo F), N-glycosidase F (PNGase F), and O-glycanase treatment. Only N-glycosidase F and neuraminidase increased the electrophoretic mobility of the radiolabeled receptor bands, whereas all other glycosidases did not. PNGase F treatment of both radiolabeled receptor bands electroeluted from gel slices reduced the apparent molecular mass of by 16-17 kDa units, that is M(r) = 96,000 to 79,000 and M(r) = 60,000 to 44,000, indicating removal of N-linked oligosaccharide chains of similar size from both species. Neuraminidase treatment caused slight increases in the electrophoretic mobilities suggesting the presence of terminal sialic residues. It is concluded that the Y2 binding proteins are N-linked complex (sialo)glycoproteins with a minimal core protein size of M(r) = 44,000. Furthermore, based on this sensitivity pattern of the glycosidases, the Asn-linked carbohydrate may be of the tri- or tetra-antennary complex type containing terminal sialic acid residues.  相似文献   

16.
The murine lymphocyte function-associated antigen 1 (LFA-1) is a glycoprotein heterodimer consisting of an Mr 180,000 alpha-chain and an Mr 95,000 beta-chain. Although LFA-1 has been studied extensively in the past few years due to its involvement in various antigen-specific T lymphocyte responses, virtually nothing is known about its glycosylation. In this report, we have analyzed the oligosaccharide moieties of the murine LFA-1 molecule. Utilizing a T lymphoma cell line, EL-4, it was found that [35S] sulfate, [3H]glucosamine, [3H]mannose, and [3H]fucose were incorporated into both the alpha- and beta-chains of LFA-1. Isolated alpha- and beta-chains from anti-LFA-1 immunoprecipitates of [3H]glucosamine-labeled NP-40 lysates were subjected to tryptic-chymotryptic digestion, and the resulting glycopeptides were fractionated by reverse-phase high performance liquid chromatography. Five major [3H]glucosamine-labeled glycopeptides were generated by this procedure from each of the two polypeptide chains. Treatment of the individual glycopeptides with almond emulsin peptide:N-glycosidase or Endo F demonstrated that the [3H]glucosamine label existed almost entirely in N-linked oligosaccharide structures (Mr 5000 to 10,000). By using similar techniques, the majority of the [35S]sulfate moieties were also found covalently bound to N-linked oligosaccharides. In addition, both [35S]sulfate-labeled alpha- and beta-chains were susceptible to Keratanase and endo-beta-galactosidase digestions, indicating the presence of sulfated N-acetyllactosamine sequences. The expression of [35S]sulfate-labeled LFA-1 on various cell types was also examined. LFA-1 was found to be sulfated only on thymocytes and splenic T cells, but not on macrophages, splenic B, or bone marrow cells.  相似文献   

17.
The composition and distribution of rat acrosomal glycoproteins during spermiogenesis have been investigated at light and electron microscopic level by means of a variety of morphological techniques including the application of lectins conjugated to peroxidase, digoxigenin and colloidal gold, enzyme and chemical deglycosylation procedures and conventional histochemistry. Results obtained with lectin histochemistry in combination with beta-elimination reaction and endoglucosaminidase F/peptide N-glycosidase F digestion suggest that glycoproteins of mature acrosomes contain both N- and O-linked oligosaccharides. N-linked chains of acrosomal glycoproteins contain mannose and external residues of N-acetylglucosamine and galactose. They also have fucose residues linked to the core region of the oligosaccharide side chains. O-linked oligosaccharide chains contain external residues of both galactose and N-acetylgalactosamine. Mannose, fucose, galactose and N-acetylglucosamine residues were detected in acrosomes at all steps of spermiogenesis. N-acetylgalactosamine residues were only observed in the late steps of the spermiogenesis. N-acetylneuraminic acid residues were not detected throughout the acrosomal development. At initial stages of acrosome formation, glycoproteins were preferentially distributed over the acrosomic granules. In cap phase spermatids, lectin binding sites were homogeneously distributed throughout the acrosomes; however, in mature spermatozoa, glycoproteins were predominantly located over the outer acrosomal membrane.  相似文献   

18.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

19.
The accessibility of the asparagine-linked carbohydrate chains of human thyrotropin (hTSH) and free alpha and beta subunits was investigated by their susceptibility to endoglycosidases H and F as well as to peptide:N-glycosidase F. Iodinated hTSH or subunits were incubated with a commercial enzyme preparation containing both endoglycosidase F and N-glycosidase F activities and further analyzed by sodium dodecyl sulfate gel electrophoresis followed by quantitative autoradiography. We show that, working at the optimum of the N-glycosidase activity, the relative amount of endoglycosidase required for half-deglycosylation was 20-fold higher for native hTSH than for the reduced and dissociated subunits. Under nondenaturing conditions, the 18K beta subunit of hTSH could be readily deglycosylated to a 14K species while the 22K alpha subunit was largely resistant. However, both subunits were converted to an apoprotein of similar apparent molecular weight of 14K following reduction of disulfide bonds. In contrast, the free alpha subunit of human choriogonadotropin appeared fully sensitive to carbohydrate removal under nonreducing conditions despite the presence of a partially deglycosylated 18K intermediate at low concentration of endoglycosidase. Similarly, both hTSH-alpha and hTSH-beta could be completely deglycosylated after acid dissociation of the native hormone. While all three carbohydrate chains of hTSH are sensitive to pure peptide:N-glycosidase F, only one on alpha and the single oligosaccharide present on beta in hTSH appeared to be cleaved by pure endoglycosidase F. Interestingly, one of the two carbohydrate chains present on alpha was also found to be susceptible to endoglycosidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Affinity-purified rat ovarian lutropin (LH) receptor is a single 90 kDa polypeptide which binds to immobilized lectins, indicating that the receptor is a glycoprotein [Keinänen, Kellokumpu, Metsikkö & Rajaniemi (1987) J. Biol. Chem. 262, 7920-7926]. In the present study the glycoprotein nature of the rat ovarian LH receptor was investigated in order to determine the contribution of the glycan moiety to receptor''s size and hormone-binding properties. Treatment of the 125I-labelled purified LH receptor with neuraminidase and peptide N-glycosidase F resulted in a decrease in size of LH receptor from 90 kDa to 79 kDa and 62 kDa respectively, as assessed by SDS/polyacrylamide-gel electrophoresis. Endo-alpha-N-acetylgalactosaminidase treatment did not affect the electrophoretic mobility of the intact or neuraminidase-treated LH receptor. Subjecting the membrane-bound LH receptor to similar enzymic treatments followed by ligand blotting showed that the 79 kDa and 62 kDa forms are capable of specific hormone binding. Furthermore, intact and peptide N-glycosidase F-treated membranes bound 125I-labelled human choriogonadotropin with similar affinities. These data suggest that molecular mass of the polypeptide backbone of the LH receptor is 62 kDa. The receptor contains N-glycosidically linked oligosaccharide chains with terminal sialic acid residues, with little or no O-linked oligosaccharide. N-Linked carbohydrate is not required for specific high-affinity hormone binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号