首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new gene, designated rcsF, was located adjacent to drpA at the 5.2-min position of the genetic map of Escherichia coli. The deduced amino acid sequence encoded by the rcsF gene indicates a small protein of 133 amino acid residues with a calculated pI of 10.8 that is rich in proline, serine, alanine, and cysteine residues. When overexpressed as a result of its presence on a multicopy plasmid, rcsF confers a mucoid phenotype and restores colony formation to ftsZ84 mutant cells on L agar medium containing no added NaCl. These two phenotypes are not observed in rcsB mutant cells. Ion mutant cells harboring an rcsF mutation accumulate considerably lower levels of exopolysaccharides, whereas the presence of a multicopy rcsF plasmid not only increases capsule synthesis but also confers a mucoid phenotype at 37 degrees C, a temperature at which ion mutant cells are known not to form mucoid colonies. RcsF does not stimulate the expression of rcsB, indicating that it exerts its action through the RcsB protein, possibly by phosphorylation. It is also shown that RcsF stimulation of capsule synthesis is RcsA-dependent, whereas colony formation of ftsZ84 mutant cells can be restored by RcsF in the absence of RcsA.  相似文献   

2.
3.
4.
Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.  相似文献   

5.
6.
Genes rcsC and rcsB form a two-component system in which rcsC encodes the sensor element and rcsB the regulator. In Escherichia coli, the system positively regulates the expression of the capsule operon, cps, and of the cell division gene ftsZ. We report the identification of the promoter and of the sequences required for rcsB-dependent stimulation of ftsZ expression. The promoter, ftsA1p, located in the ftsQ coding sequence, co-regulates ftsA and ftsZ. The sequences required for rcsB activity are immediately adjacent to this promoter.  相似文献   

7.
8.
9.
10.
In Escherichia coli K-12, the rcsA and rcsB gene products are positive regulators in expression of the slime polysaccharide colanic acid. We have previously demonstrated the presence of rcsA sequences in E. coli K1 and K5, strains with group II capsular K antigens, and shown that introduction of multicopy rcsA into these strains results in the expression of colanic acid. We report here the presence of rcsB sequences in E. coli K1 and K5 and demonstrate that RcsB also plays a role in the biosynthesis of colanic acid in strains with group II K antigens. In E. coli K1 and K5 grown at 37 degrees C, multicopy rcsB and the resulting induction of colanic acid synthesis had no significant effect on synthesis of the group II K antigens. K-antigen-specific sugar transferase activities were not significantly different in the presence or absence of multicopy rcsB, and introduction of a cps mutation to eliminate colanic acid biosynthesis in a K1-derivative strain did not influence the activity of the polysialyltransferase enzyme responsible for synthesis of the K1 polymer. Furthermore, immunoelectron microscopy showed no detectable difference in the size or distribution of the group II K-antigen capsular layer in cells which produced colanic acid. Colanic acid expression therefore does not appear to significantly affect synthesis of the group II K-antigen capsule and, unlike for group I K antigens, expression of group II K antigens is not positively regulated by the rcs system.  相似文献   

11.
12.
Escherichia coli and other enteric microorganisms produce an extracellular polysaccharide capsule, called colanic acid, under certain environmental conditions. This capsular synthesis is regulated by the RcsC (sensor kinase)→YojN (phosphotransfer intermediate)→RcsB (response regulator) phosphorelay signal transduction under certain growth conditions. Nonetheless, little is known about signals that exaggerate the Rcs-system. To gain insight into signals that activate the Rcs-system, here we searched for genes that activate the Rcs-system, provided that those on a multicopy plasmid were introduced into E. coli. We identified several such genes, namely, rcsB, rcsA, djlA, lolA, and ompG. The DjlA, LolA, and OmpG proteins are particularly interesting in that they are all located on the cell surface, where the primary sensor RcsC histidine-kinase is localized. Implications of these findings are discussed with special reference to the mechanism by which RcsC perceives external signals.  相似文献   

13.
Escherichia coli and other enteric microorganisms produce an extracellular polysaccharide capsule, called colanic acid, under certain environmental conditions. This capsular synthesis is regulated by the RcsC (sensor kinase)-->YojN (phosphotransfer intermediate)-->RcsB (response regulator) phosphorelay signal transduction under certain growth conditions. Nonetheless, little is known about signals that exaggerate the Rcs-system. To gain insight into signals that activate the Rcs-system, here we searched for genes that activate the Rcs-system, provided that those on a multicopy plasmid were introduced into E. coli. We identified several such genes, namely, rcsB, rcsA, djlA, lolA, and ompG. The DjlA, LolA, and OmpG proteins are particularly interesting in that they are all located on the cell surface, where the primary sensor RcsC histidine-kinase is localized. Implications of these findings are discussed with special reference to the mechanism by which RcsC perceives external signals.  相似文献   

14.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

15.
16.
We constructed a new type of cloning vector, pERISH2, that transforms Escherichia coli HB101 only when a foreign DNA fragment is ligated into the cloning site of the plasmid vector. Plasmid pERISH2 carries the rcsB gene which is derived from the chromosome of E. coli HB101 and is involved in the regulation of colanic acid production. When E. coli HB101 is transformed by this vector carrying the intact rcsB gene, the gene product RcsB blocks bacterial growth. However, if the rcsB gene is inactivated by the insertion of a foreign DNA fragment, this recombinant plasmid no longer inhibits the growth of E. coli HB101. Although E. coli HB101 is not stably transformed by pERISH2, E. coli K-12 strains such as JM109 and C600 can harbor this vector. Therefore, pERISH2 can be amplified in JM109 and be prepared from this strain in a large quantity using conventional methods. A chromosomal gene library of Klebsiella pneumoniae is constructed easily and efficiently by the utilization of this new cloning vector.  相似文献   

17.
Colanic acid capsule synthesis in Escherichia coli K-12 is regulated by RcsB and RcsC. The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria. In our model, RcsC acts as the sensor and RcsB acts as the receiver or effector to stimulate capsule synthesis from cps genes. In addition, RcsC shows limited homology to the other effectors in its C terminus. Fusions of rcsC to phoA that resulted in PhoA+ strains demonstrated that RcsC is a transmembrane protein with a periplasmic N-terminal domain and cytoplasmic C-terminal domain. Additional control of this regulatory network is provided by the dependence on the alternate sigma factor, RpoN, for the synthesis of RcsB. The rcsB and rcsC genes, which are oriented convergently with their stop codons 196 base pairs apart, are separated by a long direct repeat including two repetitive extragenic palindromic sequences.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号