首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Defects in the APC gene are inarguably linked to the progression of colon cancers that arise both sporadically and through the transmission of germline mutations. Genetic evidence from humans and mouse models suggest that APC is a classic tumor suppressor in that both alleles likely require inactivation for tumor growth to ensue. Nearly all of the mutations, germline and somatic, result in premature termination of the single polypeptide chain, normally consisting of 2843 amino acids. Several definable motifs have now been mapped to the linear amino acid sequence of the APC polypeptide. These include an oligomerization domain, armadillo repeats, binding sites for β-catenin, the human discs large protein, microtubules, and other proteins of unknown function. Inactivation of APC in cancer is likely due to loss of function(s) normally associated with the deleted protein structure.  相似文献   

2.
The recent identification of the familial adenomatous polyposis (FAP) gene (designated as APC) enables conclusive genetic testing of at-risk family members for the specific mutation in families in which the germline gene mutation has been characterized. Presymptomatic molecular diagnosis of FAP was performed by direct direction of mutations in lymphocyte DNA in four families. Each of the families has a different mutation of the APC gene. Twenty-seven offspring of affected individuals (a priori risk of 50%) were tested. Ten of the 27 had already developed clinical features of FAP. Of the remaining seventeen, two had had a negative colon exam at an early age, and nine had never had colon exams (mean age, 12.1±3.1 SD years). Six children from this group (54%) were found to carry their affected parent's mutation. No change in the conventional FAP colon screening regimen is recommended for these children. In contrast, when direct tests indicate that an individual does not have the FAP mutation, we recommended that screening be decreased. Reduction of uncertainty for at-risk FAP family members is an important benefit of genetic testing.  相似文献   

3.
Adenomatous polyps are an intermediate in the pathway to colon carcinoma. An inherited disorder, familial adenomatous polyposis coli (APC), is characterized by hundreds to thousands of adenomatous polyps. A previously reported family had colon cancer associated with a low average but highly heterogenous number of colonic polyps, this phenotype mapped to the APC locus on 5q. Four new families have been ascertained in which the phenotypic pattern was different from classical polyposis but similar to that of the "prototype" kindred reported earlier. By multilocus linkage analysis, the gene responsible for the disease phenotype was mapped, with a high level of confidence, to the APC locus in two of the four families with the attenuated or variant form of polyposis (AAPC); the results for the two remaining kindreds were inconclusive. A combined maximum LOD score of approximately 7.6 at a recombination fraction of 0 was obtained when the results were summed over the four pedigrees with markers closest to the APC locus. The establishment of genetic linkage in such families may point to the APC locus as having a more significant role in inherited predispositions to colorectal cancer than was previously thought.  相似文献   

4.
Mutations in the adenomatous polyposis coli (APC) gene are the basis of familial adenomatous polyposis and the majority of sporadic colorectal cancer. APC is expressed in a wide variety of tissues, interacts with the cytoskeleton, is involved in regulating levels of beta-catenin and, most recently, has been shown to bind DNA, suggesting that it may possess a nuclear role. The mutation spectrum implicated in tumorigenesis and its correlation with disease phenotype is well characterized and has contributed to our understanding of important functional domains in APC. Despite these advances, APC continues to provide a fertile subject of research for both colorectal tumorigenesis and cancer in general.  相似文献   

5.
Background

Familial adenomatous polyposis (known also as classical or severe FAP) is a rare autosomal dominant colorectal cancer predisposition syndrome, characterized by the presence of hundreds to thousands of adenomatous polyps in the colon and rectum from an early age. In the absence of prophylactic surgery, colorectal cancer (CRC) is the inevitable consequence of FAP. The vast majority of FAP is caused by germline mutations in the adenomatous polyposis coli (APC) tumor suppressor gene (5q21). To date, most of the germline mutations in classical FAP result in truncation of the APC protein and 60% are mainly located within exon 15.

Material and methods

In this first nationwide study, we investigated the clinical and genetic features of 52 unrelated Algerian FAP families. We screened by PCR-direct sequencing the entire exon 15 of APC gene in 50 families and two families have been analyzed by NGS using a cancer panel of 30 hereditary cancer genes.

Results

Among 52 FAP index cases, 36 had 100 or more than 100 polyps, 37 had strong family history of FAP, 5 developed desmoids tumors, 15 had extra colonic manifestations and 21 had colorectal cancer. We detected 13 distinct germline mutations in 17 FAP families. Interestingly, 4 novel APC germline pathogenic variants never described before have been identified in our study.

Conclusions

The accumulating knowledge about the prevalence and nature of APC variants in Algerian population will contribute in the near future to the implementation of genetic testing and counseling for FAP patients.

  相似文献   

6.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.  相似文献   

7.
Jaiswal AS  Balusu R  Armas ML  Kundu CN  Narayan S 《Biochemistry》2006,45(51):15903-15914
Recently, we found an interaction between adenomatous polyposis coli (APC) and DNA polymerase beta (pol-beta) and showed that APC blocks strand-displacement synthesis of long-patch base excision repair (LP-BER) (Narayan, S., Jaiswal, A. S., and Balusu, R. (2005) J. Biol. Chem. 280, 6942-6949); however, the mechanism is not clear. Using an in vivo LP-BER assay system, we now show that the LP-BER is higher in APC-/- cells than in APC+/+ cells. In addition to pol-beta, the pull-down experiments showed that the full-length APC also interacted with flap endonuclease 1 (Fen-1). To further characterize the interaction of APC with pol-beta and Fen-1, we performed a domain-mapping of APC and found that both pol-beta and Fen-1 interact with a 138-amino acids peptide from the APC at the DRI-domain. Our functional assays showed that APC blocks pol-beta-mediated 1-nucleotide (1-nt) as well as strand-displacement synthesis of reduced abasic, nicked-, or 1-nt gapped-DNA substrates. Further studies demonstrated that APC blocks 5'-flap endonuclease as well as the 5'-3' exonuclease activity of Fen-1 resulting in the blockage of LP-BER. From these results, we concluded that APC can have three different effects on the LP-BER pathway. First, APC can block pol-beta-mediated 1-nt incorporation and strand-displacement synthesis. Second, APC can block LP-BER by blocking the coordinated formation and removal of the strand-displaced flap. Third, APC can block LP-BER by blocking hit-and-run synthesis. These studies will have important implications for APC in DNA damage-induced carcinogenesis and chemoprevention.  相似文献   

8.
9.
10.
The first 14 exons of the APC gene have been screened by the denaturation gradient gel electrophoresis method in 160 unrelated patients with familial adenomatous polyposis coli (APC) syndrome. Four polymorphic variants corresponding to silent mutations not associated with the disease phenotype were observed. Mutations predicted to alter the coding property of the APC gene were observed in 26 patients. All these mutations are expected to lead either to aberrant splicing, to synthesis of a truncated APC protein because of the emergence of a stop codon, or to a change in the translation reading frame. Single-base-pair substitutions were observed on 21 occasions. The most frequent mutation (eight cases) was a C-to-T change which exclusively occurred on the nontranscribed strand within a CG dinucleotide.  相似文献   

11.
The gene associated with adenomatous polyposis coli (APC) has been mapped to the long arm of chromosome 5. To saturate the APC region with DNA markers, two independent microdissection libraries with an emphasis on 5q21.2-21.3 and 5q22 have been constructed from GTG-banded human metaphase chromosomes. PCR-amplified insert DNA of the primary amplificate used as a probe in chromosomal in situ suppression (CISS) hybridization of human metaphase spreads revealed region-specific signals at the chromosomal site that was excised for cloning. One hundred forty-two inserts, derived from both libraries, have been characterized in more detail. Deletion mapping analysis was performed with 17 single-copy clones on a hamster-human hybrid cell panel. Seven of these clones were located within two interstitial deletions of 6-8 Mb from APC-affected individuals around chromosome bands 5q21-22. The identification of new microclones mapping into these deletions and their use in isolating YAC clones should contribute to the construction of a contiguous physical map of the APC region.  相似文献   

12.
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth‐related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA‐seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292‐4293‐Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA‐seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene‐based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high‐resolution reference for treating other syndromes associated with supernumerary teeth.  相似文献   

13.
We have evaluated the usefulness of denaturing high performance liquid chromatography (dHPLC) for scanning the adenomatous polyposis coli (APC) gene for point mutations, small deletions, and insertions. Our assay consists of 28 sets of primers to amplify the 15 exons of the APC gene. All PCR reactions were amplified simultaneously using the same reaction conditions in a 96-well format and then analyzed by dHPLC, using empirically determined optimum temperatures for partial fragment denaturation. Previously studied DNA specimens from 47 familial adenomatous polyposis (FAP) patients were analyzed by dHPLC and all mutations were correctly identified and confirmed by sequence analysis. This approach identified a single-base substitution in exon 6 and a 2-bp insertion in exon 15 that initially had not been detected by single-strand conformational polymorphism (SSCP) analysis. A novel mutation in exon 15 of the APC gene, 2065delG (codon 689) that had previously been undetected by the protein truncation test (PTT) was also identified by dHPLC. We present our validation studies of dHPLC technology for APC gene analysis in terms of sensitivity and specificity and compare it to current standard scanning technologies including PTT, SSCP, and conformational sensitive gel electrophoresis (CSGE).  相似文献   

14.
Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. We report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. We see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC.  相似文献   

15.
Summary A previously described genomic library constructed from microdissected DNA has been used to generate a large number of probes around the adenomatous polyposis coli (APC) gene at 5q22. A total of 202 clones were hybridised directly onto a somatic cell hybrid panel containing two APC-related interstitial deletions. Of 75 microclones that gave clear hybridisation signals, 22 independent clones mapped into the region common to both deletions. In addition, 4/22 of the markers are conserved in rodent DNA. These clones should provide a valuable resource for screening cDNA libraries and cloning the DNA around the APC gene in yeast artificial chromosomes.This work will be presented in part at HGM11, London.  相似文献   

16.
Adenomatous polyposis coli (APC) tumor suppressor protein has been shown to be localized near the distal ends of microtubules (MTs) at the edges of migrating cells. We expressed green fluorescent protein (GFP)-fusion proteins with full-length and deletion mutants of Xenopus APC in Xenopus epithelial cells, and observed their dynamic behavior in live cells. During cell spreading and wound healing, GFP-tagged full-length APC was concentrated as granules at the tip regions of cellular extensions. At higher magnification, APC appeared to move along MTs and concentrate as granules at the growing plus ends. When MTs began to shorten, the APC granules dropped off from the MT ends. Immunoelectron microscopy revealed that fuzzy structures surrounding MTs were the ultrastructural counterparts for these GFP signals. The COOH-terminal region of APC was targeted to the growing MT ends without forming granular aggregates, and abruptly disappeared when MTs began to shorten. The APC lacking the COOH-terminal region formed granular aggregates that moved along MTs toward their plus ends in an ATP-dependent manner. These findings indicated that APC is a unique MT-associated protein that moves along selected MTs and concentrates at their growing plus ends through their multiple functional domains.  相似文献   

17.
Migration is a complex process in which cells move in a given direction either in response to changes in the extracellular environment or as a consequence of an intrinsic propensity for directional movement. Migration plays key roles in many physiological and pathological processes, including development, angiogenesis, tissue regeneration and metastasis. An important role in migration is played by caveolin-1 and caveolae. Caveolae compartmentalize intracellular signalling pathways to orchestrate cell migration. Caveolin-1 presents a polarized distribution in migrating cells and is linked to the cytoskeleton, and changes in its expression modulate migration. Although there are some discrepancies regarding the regulatory effect of caveolin-1, most studies show that it promotes cell movement and polarity. The importance of caveolin-1 has recently been reinforced by studies with Cav1(-/-) cells, which indicate that it establishes polarity during directional migration by coordinating Src kinase and Rho GTPase signalling.  相似文献   

18.
Kim IJ  Kim K  Kang HC  Jang SG  Park JG 《Genetic testing》2008,12(2):295-298
The adenomatous polyposis coli (APC), which is the susceptible gene for familial adenomatous polyposis (FAP) and sporadic colorectal cancer, spans 15 exons. The open reading frame of APC is 8529 bp, which encodes 2843 amino acids. Conventional genetic screening involves extensive time as well as high cost and labor. Thus, we developed a novel APC ready-to-use plate for high-throughput mutational analysis by denaturing high performance liquid chromatography (DHPLC). To prepare the ready-to-use APC plate, all 38 primer pairs and PCR mixtures were aliquoted into individual wells of a 96-well plate, and frozen at -20 degrees C until use. All 38 PCR primers were designed to be amplified at the same temperature (52 degrees C). We examined a total of 27 FAP patient samples with APC germline mutations (17 for multiple bp deletions, 1 for 1 bp deletion, 9 for nonsense mutations) and 50 APC-negative noncarriers. All 17 multiple bp deletion mutations were detected during the initial 50 degrees C running analysis and thus ruled out for further analyses. All other mutations were clearly detected under specific optimized conditions. More than 50% of the APC germline mutations were multiple base pair deletions and efficiently selected by omitting time-consuming partial denaturing conditions.  相似文献   

19.
20.
The APC gene is a putative human tumor-suppressor gene responsible for adenomatous polyposis coli (APC), an inherited, autosomal dominant predisposition to colon cancer. It is also implicated in the development of sporadic colorectal tumors. The characterization of APC gene mutations in APC patients is clinically important because DNA-based tests can be applied for presymptomatic diagnosis once a specific mutation has been identified in a family. Moreover, the identification of the spectrum of APC gene mutations in patients is of great interest in the study of the biological properties of the APC gene product. We analyzed the entire coding region of the APC gene by the PCR–single-strand conformation polymorphism method in 42 unrelated Italian APC patients. Mutations were found in 12 cases. These consist of small (5–14 bp) base-pair deletions leading to frameshifts; all are localized within exon 15. Two of these deletions, a 5-bp deletion at position 3183–3187 and a 5-bp deletion at position 3926–3930, are present in 3/42 and 7/42 cases of our series, respectively, indicating the presence of mutational hot spots at these two sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号