首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vacuolar-type rotary H(+)-ATPase/synthase (V(o)V(1)) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V(1) (A(3)B(3)D(1)F(1)) and V(o) (C(1)E(2)G(2)I(1)L(12)) subcomplexes in vitro. A(3)B(3)D and A(3)B(3) also reconstituted with V(o), resulting in a holoenzyme-like complexes. However, A(3)B(3)D-V(o) and A(3)B(3)-V(o) did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V(1) or A(3)B(3)D and a donor dye attached to subunit C in V(o). The estimated dissociation constants K(d) for V(o)V(1) and A(3)B(3)D-V(o) were ~0.3 and ~1 nm at 25 °C, respectively. These results suggest that the A(3)B(3) domain tightly associated with the two EG peripheral stalks of V(o), even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A(3)B(3) with V(o) is much lower than that of the EG peripheral stalks.  相似文献   

3.
From the aerial part of Acanthus ebracteatus, a megastigmane glycoside (ebracteatoside A), three aliphatic alcohol glycosides (ebracteatosides B-D), as well as 7-chloro-(2R)-2-O-beta-D-glucopyranosyl-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one (7-Cl-DIBOA-Glc) were isolated together with 22 known compounds. Structural elucidations were based on analyses of spectroscopic data.  相似文献   

4.
To date, the nomenclature of mammalian genes encoding the numerous subunits and their many isoforms that comprise the family of vacuolar H(+)-ATPases has not been systematic, resulting in confusion both in the literature and among investigators. We present the official new system for these genes, approved by both Human and Mouse Gene Nomenclature Committees.  相似文献   

5.
Characteristics of the vacuolar-type (V-type) H+-ATPase fromguard cell protoplasts of Commelina communis L. were investigatedusing a linked enzyme assay and nitrate inhibition as a diagnosticindicator of the enzyme activity. ATPase activity was completelyinhibited by about 50 mol m–3 nitrate and activity wasoptimal near pH 8.0. The temperature optimum for activity wasabout 37 C and an Arrhenius plot indicated changes in activationenergy for the ATPase at 15C and possibly at about 30 C. Theenzyme was stimulated by Cl while Ca2+ inhibited activity(l50 = 1.5 mol m–3). The apparent Km (MgATP) was 0.62mol m–3. Incubation of guard cell protoplasts for up to 5 h in 50 µMabscisic acid (ABA) or 25µM fusicoccin (FC) did not affectsubsequent ATPase activity. In vitro assays with FC or ABA alsodid not affect enzyme activity. Activity was not affected bylight or potassium ferricyanide, two factors which are knownto influence stomatal activity. Beticoline was a potent inhibitorof activity (l50 = 50 µM) while DCCD was less effective(l50 = 90µM). On chlorophyll, protein and protoplast bases, V-type ATPaseactivity was greater in guard cell protoplasts than mesophyllcell protoplasts by 66, 13.9 and 1.9, respectively. On atonoplast surface area basis the enzyme activity was 5.6 timeshigher in guard cell protoplasts than in mesophyll cell protoplasts Thus, although the characteristics of the V-type, H +-ATPaseof GCP are very similar to those found in other cell types,rates of activity and probably tonoplast enzyme density aremuch greater in guard cell protoplasts than mesophyll cell protoplastsof C. communis which corresponds with the large and rapid ionfluxes across the tonoplast associated with stomatal movements Key words: Guard cell protoplasts, stomata, V-type H +-ATPase  相似文献   

6.
The proteolipid subunit of H+-ATPase was labeled by [14C]N,N-dicyclohexylcarbodiimide in bovine heart mitochondria. The radioactive labeling was followed using various systems of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). When using discontinuous SDS-PAGE (Laemmli, U.K., 1970,Nature (London)227, 680–685) a monomeric (Mr 7600±1500) and a dimeric form (Mr 17,800±1200) of the proteolipid were detected, while only the monomeric form was found on urea (8 M) containing gels (SDS-PAGE according to Laemmli; or Swank, R. T., and Munkers, K. D., 1971,Anal. Biochem. 39, 462–477). When using SDS-PAGE with Na-Pi buffer (Weber, K., and Osborn, M., 1969,J. Biol. Chem. 244, 4406–4442), only a dimeric form of the proteolipid (Mr 15,000±1000) was detected. Experimental data indicate that the different patterns of proteolipid separation are related to the presence of the two distinct proteolipid conformations in the SDS solution.  相似文献   

7.
The activity of Na+/H(+)-exchange and H(+)-ATPase was measured in the absence of CO2/HCO3 by microfluorometry at the single cell level in rat proximal tubules (superficial S1/S2 segments) loaded with BCECF [2'7'-bis(carboxyethyl)5-6-carboxyfluorescein- acetoxymethylester]. Intracellular pH (pHi) was lowered by a NH4Cl-prepulse technique. In the absence of Na+ in the superfusion solutions, pHi recovered from the acid load by a mechanism inhibited by 0.1 microM bafilomycin A1, a specific inhibitor of a vacuolar-type H(+)-ATPase. Readdition of Na+ in the presence of bafilomycin A1 produced an immediate recovery of pHi by a mechanism sensitive to the addition of 10 microM EIPA (ethylisopropylamiloride), a specific inhibitor of Na+/H+ exchange. The transport rate of the H(+)-ATPase is about 40% of Na+/H(+)-exchange activity at a similar pHi (0.218 +/- 0.028 vs. 0.507 +/- 0.056 pH unit/min. Pre-exposure of the tubules to 30 mM fructose, 0.5 mM iodoacetate and 1 mM KCN (to deplete intracellular ATP) prevented a pHi recovery in Na(+)-free media; readdition of Na+ led to an immediate pHi recovery. Tubules pre-exposed to Cl(-)-free media for 2 hr also reduced the rate of Na(+)-independent pHi recovery. In free-flow electrophoretic separations of brush border membranes and basolateral membranes, a bafilomycin A1-sensitive ATPase activity was found to be associated with the brush border membrane fraction; half maximal inhibition is at 6 x 10(-10) M bafilomycin A1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang). The second-order rate constant for DCCD inhibition was inversely related to the concentration of membrane, indicating that DCCD reached the inhibitory site by concentrating in the hydrophobic environment. [14C]DCCD preferentially labeled a 16-kDa polypeptide of tonoplast vesicles, and the amount of [14C]DCCD bound to the 16-kDa peptide was directly proportional to inhibition of ATPase activity. A 16-kDa polypeptide had previously been shown to be part of the purified tonoplast ATPase. As predicted from the observed noncooperative inhibition, binding studies showed that 1 mol of DCCD was bound per mol of ATPase when the enzyme was completely inactivated. The DCCD-binding 16-kDa polypeptide was purified 12-fold by chloroform/methanol extraction. This protein was thus classified as a proteolipid, and its identity as part of the ATPase was confirmed by positive reaction with the antibody to the purified ATPase on immunoblots. From the purification studies, we estimated that the 16-kDa subunit was present in multiple (4-8) copies/holoenzyme. The purification of the proteolipid is a first step towards testing its proposed role in H+ translocation.  相似文献   

9.
Proton-translocating ATPases of the vacuolar class (V-ATPases) are found in a variety of animal cell compartments that participate in vesicular membrane transport, including clathrin-coated vesicles, endosomes, the Golgi apparatus, and lysosomes. The exact structural relationship that exists among the V-ATPases of these intracellular compartments is not currently known. In the present study, we have localized the V-ATPase by light and electron microscopy, using monoclonal antibodies that recognize the V-ATPase present in clathrin-coated vesicles. Localization using light microscopy and fluorescently labeled antibodies reveals that the V-ATPase is concentrated in the juxtanuclear region, where extensive colocalization with the Golgi marker wheat germ agglutinin is observed. The V-ATPase is also present in approximately 60% of endosomes and lysosomes fluorescently labeled using alpha 2-macroglobulin as a marker for the receptor-mediated endocytic pathway. Localization using transmission electron microscopy and colloidal gold-labeled antibodies reveals that the V-ATPase is present at and near the plasma membrane, alone or in association with clathrin. These results provide evidence that the V-ATPases of plasma membrane, endosomes, lysosomes, and the Golgi apparatus are immunologically related to the V-ATPase of clathrin-coated vesicles.  相似文献   

10.
Salinity is a major abiotic stress that greatly affects plant growth and crop production. Sodium ions in saline soil are toxic to plants because of their adverse effects on potassium nutrition, cytosolic enzyme activities, photosynthesis, and metabolism. It is important to identify genes involved in salinity tolerance from mangrove plants that survive under saline conditions. In this study, a total of 864 randomly selected cDNA clones were isolated and sequenced from the primary cDNA library of Acanthus ebracteatus. Among the 521 readable sequences, 138 of them were assembled into 43 contigs, whereas 383 were singletons. Sequence analyses demonstrated that 349 of these expressed sequence tags showed significant homology to functional proteins, of which 18% are particularly interesting as they correspond to genes involved in stress response. Some of these clones, including putative mannitol dehydrogenase, plastidic aldolase, secretory peroxidase, ascorbate peroxidase, and vacuolar H+-ATPase, may be related to osmotic homeostasis, ionic homeostasis, and detoxification.  相似文献   

11.
12.
In the course of our screening efforts to discover small molecules as selective inhibitors of vacuolar-type H+-ATPase of Saccharomyces cerevisiae, we have identified eight active destruxins, 1-8, from the fungus Metarhizium anisopliae. The structures were elucidated by extensive 1D- and 2D-NMR spectroscopy, and MS spectrometry. One of these compounds, 8, a regioisomer of chlorohydrin destruxin E (7), is a new destruxin.  相似文献   

13.
14.
15.
Streptococcus pneumoniae is uniquely sensitive to quinine and its derivatives, but only those alkaloids having antimalarial properties, i.e., those in the erythro configuration, also possess antipneumococcal activity. Quinine and related compounds inhibit the pneumococcal H+ -ATPase. Quinine- and optochin-resistant pneumococci showed mutations that change amino acid residues located in one of the two transmembrane alpha-helices of the c subunit of the F0F1, H+ -ATPase.  相似文献   

16.
The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.  相似文献   

17.
18.
Treatment of phosphorylating fragments of bacterial membrane from Micrococcus lysodeikticus with trypsin leads to increase ATPase activity. As a result of this treatment, the membrane fragments acquire the ability to transform the ATP energy into transmembrane difference in potential. Dithiothreitol has a similar effect to that of trypsin on the membrane fragments from M. lysodeikticus. Dicyclohexylcarbodimide inhibits ATPase of the membrane fragments of M. lysodeikticus, and also the ATPase-reaction-coupled generation of membrane potential. It has been suggested that the increased ATPase activity of membranes from M. lysodeikticus during treatment with trypsin and dithiothreitol is connected with the effect of these agents on the protein inhibitor of ATPase.  相似文献   

19.
The aquatic air-breathing fish, Trichogaster microlepis, can be found in fresh water and estuaries. We further evaluated the changes in two important osmoregulatory enzymes, Na+/K+-ATPase (NKA) and vacuolar-type H+-ATPase (VHA), in the gills when fish were subjected to deionized water (DW), fresh water (FW), and salinated brackish water (salinity of 10 g/L). Fish were sampled only 4 days after experimental transfer. The mortality, plasma osmolality, and Na+ concentration were higher in 10 g/L acclimated fish, while their muscle water content decreased with elevated external salinity. The highest NKA protein abundance was found in the fish gills in 10 g/L, and NKA activity was highest in the DW and 10 g/L acclimated fish. The VHA protein levels were highest in 10 g/L, and VHA activity was highest in the DW treatment. From immunohistochemical results, we found three different cell populations: (1) NKA-immunoreactive (NKA-IR) cells, (2) both NKA-IR and HA-IR cells, and (3) HA-IR cells. NKA-IR cells in the lamellar and interlamellar regions significantly increased in DW and 10 g/L treatments. Only HA-IR cells in the lamellar region were significantly increased in DW. In the interlamellar region, there was no difference in the number of HA-IR cells among the three treated. From these results, T. microlepis exhibited osmoregulatory ability in DW and 10 g/L treatments. The cell types involved in ionic regulation were also examined with immunofluorescence staining; three ionocyte types were found which were similar to the zebrafish model.  相似文献   

20.
In this study, we have studied the expression, localization, and functionality of vacuolar-type H+-ATPase (vH+-ATPase) and Na+/K+-ATPase in the bovine rumen epithelium. Compared with the intracellular pH (pHi) of control rumen epithelial cells (REC; 7.06 ± 0.07), application of inhibitors selective for vH+-ATPase (foliomycin) and Na+/K+-ATPase (ouabain) reduced pHi by 0.10 ± 0.03 and 0.18 ± 0.03 pH-units, respectively, thereby verifying the existence of both functional proteins. Results from qRT-PCR and immunoblotting clearly confirm the expression of vH+-ATPase B subunit in REC. However, the amount of Na+/K+-ATPase mRNA and protein is tenfold and 11-fold of those of vH+-ATPase subunit B, respectively, reflecting a lower overall abundance of the latter in REC. Na+/K+-ATPase immunostaining has revealed the protein in the plasma membrane of all REC from the stratum basale to stratum granulosum, with the highest abundance in basal cells. In contrast, the vH+-ATPase B subunit has been detected in groups of cells only, mainly localized in the stratum spinosum and stratum granulosum of the epithelium. Furthermore, vH+-ATPase has been detected in the cell membrane and in intracellular pools. Thus, functional vacuolar-type H+ pumps are expressed in REC and probably play a role in the adaptation of epithelial transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号