首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of human T lymphocytes expressing the enzyme dipeptidyl peptidase IV (DPP IV) was investigated with respect to human peripheral B-lymphocyte differentiation. B cells stimulated with pokeweed mitogen in the presence of DPP IV-positive T cells produced high amounts of immunoglobulin. Moderate amounts of immunoglobulin could be measured when B cells were cultured in the presence of DPP IV-negative T cells. DPP IV defines a T-cell subset partially overlapping the subsets characterized by the differentiation antigens Leu 3a (helper/inducer) and Leu 2a (suppressor/cytotoxic). DPP IV-positive T cells exert, in contrast to DPP IV-negative T cells, high interleukin-2 activity after stimulation with phytohemagglutinin and pokeweed mitogen. To further functionally characterize DPP IV-positive and DPP IV-negative T cells, the helper effects of Leu 3a-positive T-cell subsets, differing in DPP IV expression, were investigated in pokeweed mitogen- and Staphylococcus aureus-driven B-cell differentiation systems. After pokeweed mitogen stimulation, immunoglobulin production was markedly reduced when B cells were cultured in the presence of Leu 3a-positive T cells expressing DPP IV (DPP IV+/Leu 3a+). In contrast, high amounts of immunoglobulin were produced in cultures with Leu 3a-positive but DPP IV-negative T cells (DPP IV-/Leu 3a+). This difference in immunoglobulin production of B cells cultured with DPP IV+/Leu 3a+ and DPP IV-/Leu 3a+ T cells could not be observed in Staphylococcus aureus-stimulated cultures. Here, both T-cell subsets supported terminal differentiation of B cells. We conclude that in the pokeweed mitogen-driven culture systems, DPP IV+/Leu 3a+ and DPP IV-/Leu 3a+ T cells may differ in the production of growth and/or differentiation factors distinct from interleukin-2.  相似文献   

2.
We have investigated the transport characteristics of L-phenylalanyl-L-prolyl-L-alanine in renal brush-border membrane vesicles isolated from Japan Fisher 344 rats. This particular rat strain genetically lacks dipeptidyl peptidase IV. Owing to the absence of this enzyme, the tripeptide was found to be completely resistant to hydrolysis by the renal brush-border membrane vesicles. Uptake of the tripeptide into these membrane vesicles in the presence of an inwardly directed Na+ gradient was slightly greater than in the presence of a K+ gradient, but there was no evidence for active transport. On the contrary, uptake was very rapid in the presence of an inside-alkaline transmembrane pH gradient, and accumulation of the tripeptide inside the vesicles against a concentration gradient could be demonstrated under these conditions. The uptake was drastically reduced by dissipation of the pH gradient. The uptake was stimulated by an inside-negative membrane potential and inhibited by an inside-positive membrane potential. Moreover, the uptake was greater in voltage-clamped membrane vesicles than in control vesicles. Many di- and tripeptides inhibited this pH gradient-stimulated uptake of Phe-Pro-Ala. The apparent dissociation constant for the tripeptide was 48 microM. High performance liquid chromatography analysis of the intravesicular content at the peak of the overshoot revealed that the tripeptide was transported across the membrane almost entirely in the intact form. These data provide the first direct evidence for the presence of an electrogenic tripeptide-proton symport in renal brush-border membranes.  相似文献   

3.
T-Cell subsets identified by polyclonal and monoclonal antibodies to dipeptidyl peptidase IV (DP IV) were investigated. Analysis in a cytofluorograf revealed 63 +/- 7% positive scatter-gated T lymphocytes. DP IV-positive cells were found to be T11+, 74-81% OKT4+, and 12-19% OKT8+. DP IV-negative cells were T11+ and comprise 16-40% OKT8+, and 10-30% OKT4+ T cells. Treatment of T lymphocytes with rabbit anti-DP IV and complement as well as the presence of rabbit anti-DP IV during culture resulted in a reduction of interleukin 2 (IL-2) production. This reduction was not observed with the mouse monoclonal anti-DP IV antibody II-19-4-7. Positive enrichment of DP IV-positive lymphocytes by cell sorting revealed excellent IL-2 production of DP IV-positive cells and very poor IL-2 activity in supernatants obtained from DP IV-negative lymphocytes. Thus, DP IV may serve as cell surface marker for IL-2-producing T lymphocytes.  相似文献   

4.
The effect of anhydro-4-epitetracycline on sodium gradient-dependent d-glucose transport of rabbit renal brush-border membrane vesicles was studied. The purity of isolated brush-border membrane vesicles as judged by enzyme activities was not different between normal control and anhydro-4-epitetracycline-administered rabbits. There was no difference in estimate of intravesicular volume, either. When NaCl was used for sodium gradient, the overshoot of d-glucose uptake into brush-border membrane vesicles isolated from anhydro-4-epitetracycline-treated rabbits was significantly smaller than that of normal control rabbits. In the cases of NaSCN or Na2SO4, the former was also smaller than the latter, but not significantly so. To avoid the possible effect of membrane potential on d-glucose uptake, the voltage-clamp method was applied. Even in the voltage-clamped condition, the overshoot of d-glucose uptake into vesicles from anhydro-4-epitetracycline-treated rabbits was decreased compared to that of normal rabbits. In vitro incubation of brush-border membrane vesicles with 20 mM anhydro-4-epitetracycline caused no alteration in sodium gradient-dependent d-glucose uptake. Our results demonstrate that there exists a disorder in sodium gradient-dependent d-glucose uptake of renal brush-border membrane in anhydro-4-epitetracycline-treated rabbits, and suggest that this disorder is one of the underlying mechanisms of experimental Fanconi syndrome.  相似文献   

5.
To elucidate the mechanisms underlying the dysfunctions of intestinal absorption induced by antitumor drugs, the effect of pretreatment with mitomycin C on sodium gradient-dependent D-glucose and L-alanine transports was studied in rat brush-border membrane vesicles. 24, 48, 96, or 120 h following a single intravenous injection of mitomycin C, brush-border membrane vesicles were prepared from rat small-intestines. The uptake of D-glucose and L-alanine was shown to be Na+ gradient-dependent even in the case of vesicles obtained from mitomycin C-treated rats, but uptake rates measured at 15 s and magnitude of overshooting effect in uptake of both solutes were decreased in vesicles maximally from 48 h mitomycin C-treated rats. The rate of D-glucose uptake calculated at 15 s recovered to the control level in vesicles prepared at 96 h and 120 h after mitomycin C-treatment, indicating that the effect of mitomycin C on Na+ gradient-dependent D-glucose transport would be fully reversible. Tracer exchange experiments under Na+ and D-glucose equilibrated conditions indicated that the Na+/D-glucose transporters were similarly operative in the vesicles from control and 48 h mitomycin C-treated rats. Rates of 22Na+ uptake measured at 15 s in vesicles from 48 h mitomycin C-treated rats, however, were increased. The increased permeability to Na+ might bring about a more rapid dissipation of the Na+ gradient in these vesicles and this would secondarily cause the decrease in Na+-dependent D-glucose uptake in vesicles from mitomycin C-treated rats.  相似文献   

6.
We have used a strain of rat (Fischer 344) lacking brush border membrane dipeptidyl peptidase IV activity to examine its effect on the intestinal assimilation of prolyl peptides. In addition, we have examined the biochemical basis for the enzyme deficiency. An analysis of several brush border membrane hydrolases in different regions of the small intestine demonstrates that these rats lack only dipeptidyl peptidase IV. They also have a greatly reduced ability to hydrolyze and absorb in vivo peptides of the NH2-X-Pro-Y type which are known substrates for the enzyme. Immunoblot analysis with polyclonal and monoclonal antibody indicates that the animals lack an identifiable dipeptidyl peptidase IV protein in intestinal epithelial cells. Levels and types of dipeptidyl peptidase IV mRNA were analyzed in several tissues and found to be similar to that of control animals. Biosynthetic labeling of intestinal explants revealed that two distinct forms (102 and 108 kDa) of dipeptidyl peptidase IV are initially synthesized by deficient rats, in contrast to the single protein (106 kDa) observed in normal animals. Pulse-chase labeling experiments (+/- endoglycosidase H) show that these two altered forms of dipeptidyl peptidase IV, although initially glycosylated with N-linked high mannose carbohydrate, fail to be processed to the mature complex glycosylated form and undergo intracellular degradation.  相似文献   

7.
Summary The occurrence of dipeptidyl peptidase (DPP) IV during development in Wistar rat organs was studied on day 10, 16 and 21 of gestation and on day 1, 4, 8, 13, 21, 26 and 60 after birth comparing immunohistochemistry and activity histochemistry. A polyclonal antibody, as well as monoclonal antibodies recognizing four different epitopes (A-D) of the DPP IV molecule, were employed for the immunohistochemical studies. In all investigated tissues, immunoreactivity with the polyclonal antibody appeared earlier than DPP IV activity and was already present on day 10 of gestation in the plasma membranes of embryonic and extraembryonic (decidual) cells. At these and other sites, e.g. brain capillary endothelium and tracheal or bronchial epithelium, immunoreactivity with the polyclonal antibody decreased or disappeared after birth and enzyme activity never developed. Immunoreactivity with the monoclonal antibodies appeared later than that with the polyclonal antibody, and mostly in those structures where DPP IV activity was subsequently found. The monoclonal antibody against epitope D showed a high reactivity in the epididymal duct, renal collecting ducts and in all domains of the hepatocyte plasma membrane, where neither DPP IV activity nor immunoreactivity with the other antibodies were observed. Our results also suggest that DPP IV might be present as a molecule before it becomes catalytically active and that immunoreactivity occurs at more sites than DPP IV activity. However, it cannot be excluded that the polyclonal antibody and the monoclonal antibody against the epitope D cross-react with as yet uncharacterized proteins, which express common epitopes during embryonic development, but are not present in the tissues of adult Wistar rats.  相似文献   

8.
We investigated ultrastructural localization of dipeptidyl peptidase IV (DPP IV) [EC3.4.14 5] in rat liver cells quantitatively by post embedding protein A-gold technique. In the hepatocyte, DPP IV was mainly localized on the bile canalicular surface and the lysosomal membranes, but were scarcely detectable on the sinusoid-lateral surface. A small number of DPP IV was also detected in the trans region of the Golgi apparatus, suggesting that this part may play important roles in intracellular transport or recycling of this enzyme. In the endothelial cell, DPP IV existed on the whole surface of the plasma membrane and the lysosomes. In the Kupffer cell DPP IV was mainly localized in lysosomes and a few were detected on the plasma membrane.  相似文献   

9.
The transport properties of brush-border membrane vesicles isolated by a calcium-precipitation method from the renal cortex of normal and parathyrin (parathyroid hormone)-treated rats were studied by a rapid-filtration technique. Parathyrin elicited a dose-dependent decrease in the Na+-dependent phosphate uptake by the brush-border membrane vesicles, but the uptake of D-glucose, Na+ and mannitol was not affected. A maximum inhibition of 30% was observed after the application of 30 U.S.P. units intramuscularly 1 h before the animals were killed. Intravenous infusion of dibutyryl cyclic AMP (0.5-1.5 MG) also decreased the phosphate uptake by the brush-border vesicles. Both dibutyryl cyclic AMP and parathyrin were ineffective when added in vitro to brush-border membrane vesicles isolated from normal rats. These data suggest that parathyrin exerts its action on the phosphate reabsorption in the renal proximal tubule by affecting the Na+/phosphate co-transport system in the brush-border membrane. The effects of parathyrin on Na+ and glucose transport, however, seem to be due to alterations to the driving forces for transport and not to the brush-border transport systems.  相似文献   

10.
Dipeptidyl peptidase activity was investigated in snake venoms from Gloydius blomhoffi brevicaudus, Gloydius halys blomhoffii, Trimeresurus flavoviridis and Crotalus atrox. The strongest dipeptidyl peptidase IV (DPP IV) activity was found in venom from G. blomhoffi brevicaudus. The substrate specificity, susceptibility to inhibitors, and pH optimum of the partially purified enzyme were similar to those of known DPP IVs from bacteria and eukaryotes. The G. blomhoffi brevicaudus venom gland cDNA library was screened to isolate cDNA clones using probes based on amino acid sequences highly conserved in known DPP IVs. Two cDNA species encoding DPP IV were obtained, and designated as DPP IVa and DPP IVb. This is the first study to report the primary structure of DPP IV from a reptile. The deduced amino acid sequences for DPP IVa and DPP IVb both consist of 751amino acid residues and are highly homologous to each other. A putative catalytic triad for serine proteases, Ser-616, Asp-694, and His-726, is present. It is of particular interest that the deduced NH(2)-terminal sequence associated with the characteristic signal peptide is identical to that determined from the purified DPP IV. This indicates that the signal peptide of snake venom DPP IV is not cleaved off during biosynthesis, unlike those of other snake venom proteins.  相似文献   

11.
We examined the activities of peptidases in the synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Dipeptidyl peptidase II (DPP II), prolyl endopeptidase (PEP), and collagenase-like peptidase (CLP) activities were higher in knee joint synovial membrane from patients with RA than in that from patients with OA. DPP II and PEP activities in knee joint synovial membrane of patients with RA increased in parallel with the increase in joint fluid volume, whereas DPP IV activity decreased in parallel with the increase in joint fluid volume. These results suggest that these peptidases in the synovial membrane may play some role in immunological disturbances in the joints of patients with RA. Measurement of these peptidases in synovial membrane may be useful in the diagnosis of the severity of local joint inflammation.  相似文献   

12.
The present paper demonstrates the terminal de- and reglycosylation of a rat hepatocyte plasma membrane glycoprotein, dipeptidyl peptidase IV (DPP IV). Cultured hepatocytes were used in pulse-chase experiments with [3H]L-fucose and [14C]N-acetyl-D-mannosamine as markers for terminal carbohydrates, [3H]D-mannose as marker of a core-sugar, and [35S]L-methionine for labeling the protein backbone. Membrane DPP IV was immunoprecipitated with a polyclonal antibody which bound selectively at 4 degrees C to the cell-surface glycoprotein. The times of maximal labeling of hepatocyte plasma membrane DPP IV were 6-9 min for [3H]L-fucose, 20 min for [3H]D-mannose, and 25 min for [35S]L-methionine. When antibodies were bound to cell-surface DPP IV at 4 degrees C, the immune complex remained stable for more than 1 h after rewarming to 37 degrees C, despite ongoing metabolic and membrane transport processes. This was shown by pulse labeling with [35S]L-methionine at 37 degrees C, followed by cooling to 4 degrees C, and addition of antibody against plasma membrane DPP IV. During rewarming, the radioactivity in the complex remained constant. In a similar experiment with [3H]L-fucose, the radioactivity in the immune complex declined rapidly, indicating a defucosylation of the plasma membrane glycoprotein. Using the same experimental design with [3H]D-mannose, the radioactivity in the immune complex remained constant, showing that the core-sugar D-mannose is not cleaved from the membrane glycoprotein. Terminal reglycosylation (refucosylation and resialylation) was demonstrated as follows. Hepatocytes were maintained at 37 degrees C in a medium supplemented with tunicamycin in order to block the de novo synthesis of N-glycosidically bound carbohydrate chains. At 4 degrees C the antibody against DPP IV bound only to cell surface glycoprotein. During the rewarming period at 37 degrees C, radioactivity from [3H]L-fucose and [14C]N-acetyl-D-mannosamine became incorporated into the immune complex. This indicates a fucosylation and sialylation of the glycoprotein originally present at the cell surface. The mechanisms whereby terminal de- and reglycosylation of plasma membrane glycoproteins may occur during membrane recycling are discussed.  相似文献   

13.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

14.
The interaction of 5-(N-methyl-N-isobutyl)amiloride (MIBA) with brush-border membrane vesicles isolated from normal human term placentas was investigated using two parameters: binding and transport. The binding of MIBA to placental membranes was specific and temperature- and pH-dependent, and the apparent dissociation constant (Kd) for the process was 58 +/- 2 microM. The binding was inhibited by other amiloride analogs and also by clonidine and cimetidine with a rank order potency: MIBA > benzamil > dimethylamiloride > amiloride > clonidine > cimetidine. These compounds also inhibited Na(+)-H+ exchanger activity in these membrane vesicles, but with a different order of potency: dimethylamiloride > MIBA > amiloride > benzamil > cimetidine > clonidine. The membrane vesicles were also able to transport MIBA into the intravesicular space, and the transport was stimulated many-fold by the presence of an outwardly directed H+ gradient across the membrane. The H+ gradient was the driving force for uphill accumulation of MIBA inside the vesicles. The transport process was electrically silent. The transport of MIBA was inhibited by other amiloride analogs and by clonidine and cimetidine, and the order of potency was the same as the order with which these compounds inhibited the binding of MIBA. The Michaelis-Menten constant (Kt) for the transport process was 46 +/- 2 microM. The binding as well as the transport were also inhibited by Na+ and Li+. Interestingly, tetraethylammonium and N1-methylnicotinamide, two of the commonly used substrates in organic cation transport studies, failed to inhibit the binding and transport of MIBA. Furthermore, although the outwardly directed H+ gradient-dependent uphill transport of tetraethylammonium could be demonstrated in renal brush-border membrane vesicles, there was no evidence for the presence of a transport system for this prototypical organic cation in placental brush-border membrane vesicles. It is concluded that the human placental brush-border membranes possess an organic cation-proton antiporter which accepts MIBA as a substrate, the low affinity binding site for MIBA observed in these membranes represents this antiporter, and that the placental organic cation-proton antiporter is distinct from the widely studied renal organic cation-proton antiporter.  相似文献   

15.
Glutamine uptake was examined in isolated renal brush-border and basolateral-membrane vesicles from control and acidotic rats. In brush-border vesicles from acidotic animals, there was a significant increase in the initial rate of glutamine uptake compared with that in controls. Lowering the pH of the medium increased the initial rate of glutamine uptake in brush-border vesicles from acidotic, but not from control, rats. In brush-border vesicles from both groups of animals, two saturable transport systems mediated glutamine uptake. There was a 2-fold increase in the Vmax. of the low-affinity high-capacity system in the brush-border vesicles from the acidotic animals compared with that from control animals, with no alteration in the other kinetic parameters. There was no difference in glutamine uptake by the two saturable transport systems in basolateral vesicles from control and acidotic animals. Lowering the incubation-medium pH increased the uptake of glutamine by basolateral vesicles from both control and acidotic rats to a similar extent. The data indicate that during acidosis there are alterations in glutamine transport by both the basolateral and brush-border membrane which could enhance its uptake by the renal-tubule cell for use in ammoniagenesis.  相似文献   

16.
Summary The ultrastructural localization of dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5) in rat submandibular and parotid glands was studied immunocytochemically by the peroxidase-antiperoxidase (PAP) method, using a monospecific antiserum against rat kidney DPP IV. There were no differences in the immunocytochemical localization of DPP IV between submandibular and parotid glands. In these glands, DPP IV was primarily found to be associated with the luminal and intercellular canalicular plasma membranes of acinar cells and with the luminal plasma membranes of intercalated and striated duct cells. Occasionally, immunoreaction of DPP IV was detected in cytoplasmic vesicles (vacuoles), lysosomes, and multivesicular bodies in some acinar cells as well as in ductal epithelial cells. Furthermore, the reaction product was also found within the lumina of peri-acinar and peri-ductal capillaries and in the cytoplasm of some fibroblasts in the interstitial connective tissue. These data suggest that DPP IV in the submandibular and parotid glands may play some role in the secretion or reabsorption processes of secretory proteins and peptides in these glands.  相似文献   

17.
Dipeptidyl peptidase IV (DPP IV) is a cell surface glycoprotein which has been implicated in hepatocyte-extracellular matrix interactions [Hixson, DeLourdes, Ponce, Allison & Walborg (1984) Exp. Cell Res. 152, 402-414; Walborg, Tsuchida, Weeden, Thomas, Barrick, McEntire, Allison & Hixson (1985) Exp. Cell Res. 158, 509-518; Hanski, Huhle & Reutter (1985) Biol. Chem. Hoppe-Seyler 366, 1169-1176]. However, its proteolytic substrate(s) and/or binding protein(s) which mediate this influence have not been conclusively identified. Nitrocellulose binding assays using 125I-labelled DPP IV that was purified to homogeneity from rat hepatocytes revealed a direct interaction of DPP IV with fibronectin. Although fibronectin could mediate an indirect binding of DPP IV to collagen, no evidence was found for a direct binding of DPP IV to native or denatured Type I collagen. Fibronectin appeared to bind DPP IV at a site distinct from its exopeptidase substrate recognition site since protease inhibitors such as competitive peptide substrates and phenylmethanesulphonyl fluoride enhanced binding, possibly as a result of an altered conformation of DPP IV. To determine if fibronectin binding to DPP IV is involved in the interaction of fibronectin with the hepatocyte surface, the effect of various DPP IV inhibitors on 125I-fibronectin binding to isolated hepatocytes in suspension was examined. Kinetic studies revealed that inhibitors of DPP IV which enhanced fibronectin binding in vitro accelerated the initial binding of fibronectin to the cell surface where it was subsequently cross-linked (presumably by tissue transglutaminase) to as yet undefined components. Immunolocalization of fibronectin and DPP IV in normal rat liver sections showed that both proteins were present along the hepatocyte sinusoidal membrane. These observations, coupled with previous results showing that DPP IV is tightly bound to biomatrix isolated from rat liver (Hixson et al., 1984; Walborg et al., 1985), suggest that DPP IV binding to fibronectin may play a role in interactions of hepatocytes with extracellular matrix in vivo and possibly in matrix assembly.  相似文献   

18.
Dipeptidyl peptidase IV (DPP4) is a multifunctional type II transmembrane serine peptidase which regulates various physiological processes, most notably plasma glucose homeostasis by cleaving peptide hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Inhibition of DPP4 is a potentially valuable therapy for type 2 diabetes. Synthesis and structure-activity relationships of a series of substituted diprolyl nitriles are described, leading to the identification of compound 1 with a measured DPP4 K(i) of 3.6 nM.  相似文献   

19.
Summary Thein vitro effect of ethanol on membrane structure and transport properties was studied in isolated renal brush border membrane vesicles.31P-NMR studies showed a dose-dependent increase in the quantity of an isotropic, possibly inverted-micellar component of the renal brush-border membrane as a result of treatment with ethanol. Such structures have been shown to be instrumental in the translocation of material across membrane bilayers. A23Na-NMR study of Na+ exchange in artificial phosphatidylcholine liposomes indicated that ethanol (0.1%) was capable of rending the otherwise inert vesicles permeable to sodium, supporting the idea that ethanol may exert its action via a direct effect on the structure of the phospholipid bilayer. In the isolated renal brush-border membrane vesicles, like in the artificial liposomes, amiloride-insensitive pathways of Na+ transport were shown to be markedly activated by ethanol. These results were consistent with the inhibitory effect ethanol had on Na+ gradient-dependent transport systems such as the Na+ gradient-dependentd-glucose transport and Na+/H+ exchange. In conclusion, our results indicate that ethanol exerts its effect on the renal brush-border membrane by causing a structural change in the phospholipid bilayer which activates sodium intake. The inhibitory effect of ethanol on glucose uptake and Na+/H+ exchange is secondary, as a result of the dissipation of the energy-producing Na+ gradient.  相似文献   

20.
We have measured for the first time, using specific substrates and specific fluorometric analyses, activities of three pathophysiologically important peptidases, i.e., dipeptidyl peptidase II, dipeptidyl peptidase IV, and prolyl endopeptidase in effusions from 45 patients with chronic otitis media with effusion. In 20 patients, DPP II and DPP IV were assayed simultaneously in effusions and sera. Activity of PEP was also estimated in effusions and sera from 25 patients. The mean values (+/- SD) of DPP II and DPP IV (n = 45) and PEP (n = 25) in effusion from patients with OME were 0.020 +/- 0.007, 0.66 +/- 0.04, and 0.040 +/- 0.006 nmole/min/mg protein, and 0.21 +/- 0.01, 16.2 +/- 1.87, and 1.90 +/- 0.23 nmole/min/ml of effusion, respectively. The mean values (+/- SD) for DPP II, DPP IV, and PEP in sera were 2.82 +/- 0.18, 54.8 +/- 1.23, and 3.73 +/- 0.33 nmole/min/ml of serum, respectively, which were similar to our previously reported values. Activities of DPP II, DPP IV, and PEP of serous effusions were comparable to those in serum. However, there was no significant correlation between their activities in serum and effusion. This may suggest that the major source of these enzymes in effusions may not be serum but the cells in the middle ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号