首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
In this paper we provide evidence that a fraction of large T antigen of simian virus 40 (SV40) interacts with cyclin A and p33cdk2 in both virus-infected and stably transformed cells. Immunoprecipitates of SV40 large T antigen from SV40-infected or SV40 large-T-antigen-transformed cells contain cyclin A, p33cdk2, and histone H1 kinase activity. Conversely, immunoprecipitates of cyclin A from these cells contain SV40 large T antigen. In this respect, SV40 large T antigen has properties similar to those of the E1A oncogene of adenoviruses and the E7 oncogene of human papillomaviruses.  相似文献   

4.
5.
6.
The human papilloma virus E4 protein is highly expressed in late times of infection. Evidence to date suggests that E4 is essential for amplification of the viral genome and that it can influence cell cycle. Examination of the sequences encoding the E4 proteins from several genotypes of human papillomavirus revealed the presence of RXL-containing motifs reminiscent of the cyclin-binding motifs that have been identified in several cyclin-binding proteins. When baculovirus-produced human cyclin E and cyclin A with cdk2 were incubated in vitro with a GST-E4 fusion protein, both cyclin E and A stably interacted with the GST-E4 protein containing the full E4 sequence from HPV18. The interaction was not dependent on the presence of the kinase subunit but was dependent on the integrity of the RXL motif in E4. When incubated with cell extracts from the C33A human cervical carcinoma cell line or when expressed in C33A cells, the GST-E4 protein formed interactions with cyclin A and cdk2 and kinase activity could be demonstrated in the GST-E4 complex. In contrast to the baculovirus-produced cyclin E, cellular cyclin E failed to detectably interact with GST-E4 suggesting that the HPV18 E4 sequences are capable of interacting only with cyclin A in mammalian cells. These observations suggest that human papillomavirus E4 proteins can interact with cyclin A/cdk2, which may contribute to viral manipulation of the host cell cycle.  相似文献   

7.
D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins and distinguished among the cdks that bind D-type cyclins, specifically binding cdk6, in vitro and in vivo. Fbxo7 specifically regulated D cyclin/cdk6 complexes: Fbxo7 knockdown decreased cdk6 association with cyclin and its overexpression increased D cyclin/cdk6 activity and E2F activity. Fbxo7 interacted with p27, but its enhancement of cyclin D/cdk6 activity was p21/p27 independent. Fbxo7 overexpression transformed murine fibroblasts, rendering them tumorigenic in athymic nude mice. Transformed phenotypes were dependent on cdk6, as knockdown of cdk6 reversed them. Fbxo7 was highly expressed in epithelial tumors, but not in normal tissues, suggesting that it may have a proto-oncogenic role in human cancers.  相似文献   

8.
The response of the uterine epithelium to female sex steroid hormones provides an excellent model to study cell proliferation in vivo since both stimulation and inhibition of cell proliferation can be studied. Thus, when administered to ovariectomized adult mice 17beta-estradiol (E2) stimulates a synchronized wave of DNA synthesis and cell division in the epithelial cells, while pretreatment with progesterone (P4) completely inhibits this E2-induced cell proliferation. Using a simple method to isolate the uterine epithelium with high purity, we have shown that E2 treatment induces a relocalization of cyclin D1 and, to a lesser extent, cdk4 from the cytoplasm into the nucleus and results in the orderly activation of cyclin E- and cyclin A-cdk2 kinases and hyperphosphorylation of pRb and p107. P4 pretreatment did not alter overall levels of cyclin D1, cdk4, or cdk6 nor their associated kinase activities but instead inhibited the E2-induced nuclear localization of cyclin D1 to below the control level and, to a lesser extent, nuclear cdk4 levels, with a consequent inhibition of pRb and p107 phosphorylation. In addition, it abrogated E2-induced cyclin E-cdk2 activation by dephosphorylation of cdk2, followed by inhibition of cyclin A expression and consequently of cyclin A-cdk2 kinase activity and further inhibition of phosphorylation of pRb and p107. P4 is used therapeutically to oppose the effect of E2 during hormone replacement therapy and in the treatment of uterine adenocarcinoma. This study showing a novel mechanism of cell cycle inhibition by P4 may provide the basis for the development of new antiestrogens.  相似文献   

9.
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (CDK) in association with cyclins. In mammalian cells the timing of activation of cyclin A-associated kinase activity coincides with the onset of DNA synthesis in S-phase. Using in vitro replication of SV40 origin-containing DNA as a model system, we have analyzed the proteins associated with DNA during initiation of DNA replication in S-phase cell extracts. This analysis reveals that, in addition to replication initiation proteins, cyclin A and cdk2 are also specifically associated with DNA. The association of cyclin A and cdk2 with DNA during initiation is cell cycle regulated and occurs specifically in the presence of SV40 origin-containing plasmid and SV40 T antigen (the viral replication initiator protein). The interactions among proteins involved in initiation play an important role in DNA replication. We therefore investigated the ability of cyclin A and cdk2 to associate with replication initiation proteins. Under replication initiation conditions, cyclin A and cdk2 from S-phase extracts specifically associate with SV40 T antigen. Further, the interaction of cyclin A-cdk2 with SV40 T antigen is mediated via cyclin A, and purified recombinant cyclin A associates directly with SV40 T antigen. Taken together, our results suggest that cyclin A and cdk2 are components of the SV40 replication initiation complex, and that protein-protein interactions between cyclin A-cdk2 and T antigen may facilitate the association of cyclin A-cdk2 with the complex. Received: 30 July 1996; in revised form: 25 September 1996 / Accepted: 8 October 1996  相似文献   

10.
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells.  相似文献   

11.
Transforming growth factor β1 (TGFβ1) inhibits epithelial cell proliferation late in the G1 phase of the cell cycle. We examined the effect of TGFβ1 on known late G1 cell cycle regulators in an attempt to determine the molecular mechanism of growth inhibition by this physiological inhibitor. The results demonstrate the TGFβ1 inhibits the late G1 and S phase specific histone H1 kinase activity of p33cdk2. This inhibitiion is not dur to TGFβ1's effect on p33cdk2 synthesis, but rather due to its negative effect on the late G1 phosphorylation of p33cdk2. It is also shown that TGFβ1 inhibits both late G1 cyclin A and cyclin E associated histon H1 kinase activities. The inhibitor has no effects on the synthesis of cyclin E but to inhibit the synthesis of cyclin A protein in a cell cycle dependent manner. If TGFβ1 is added to cells which have progressed futher than 8 hours into G1, then it is without inhibitory effect on cyclin A synthesis. These effect on TGFβ1 on late G1 cell cycle regulators correlate well with its inhibitory effects on cellular growth and suggest that these G1 cyclin dependent kinases might serve as targets for TGFβ1-mediated growth arrest.  相似文献   

12.
13.
During skeletal myogenesis, muscle-regulatory factors bHLH and MEF2 promote the expression of muscle-specific genes by recruiting several chromatin-modifying complexes on specific DNA regulatory sequences. A number of MyoD-interacting proteins have been reported, but whether they are recruited to the chromatin of myogenic loci, and the relationship with other chromatin bound proteins is unknown. We show that MyoD recruits cdk9/cyclin T2, together with the histone acetyltransferases p300 and PCAF, and the chromatin remodeling complex SWI/SNF, on promoters and enhancers of muscle-specific genes, and that this event correlates with the acetylation of histone tails, remodeling of chromatin, and phosphorylation of the C-terminal domain (CTD) of the RNA polymerase II at these elements.  相似文献   

14.
The stability of cell cycle checkpoint and regulatory proteins is controlled by the ubiquitin-proteasome degradation machinery. A critical regulator of cell cycle molecules is the E3 ubiquitin ligase SCFSkp2, known to facilitate the polyubiquitination and degradation of p27, E2F, and c-myc. SCFSkp2 is frequently deregulated in human cancers. In this study, we have revealed a novel link between the essential Epstein-Barr virus (EBV) nuclear antigen EBNA3C and the SCFSkp2 complex, providing a mechanism for cell cycle regulation by EBV. EBNA3C associates with cyclin A/cdk2 complexes, disrupting the kinase inhibitor p27 and enhancing kinase activity. The recruitment of SCFSkp2 activity to cyclin A complexes by EBNA3C results in ubiquitination and SCFSkp2-dependent degradation of p27. This is the first report of a viral protein usurping the function of the SCFSkp2 cell cycle regulatory machinery to regulate p27 stability, establishing the foundation for a mechanism by which EBV regulates cyclin/cdk activity in human cancers.  相似文献   

15.
Both cyclins A and B associate with and thereby activate cyclin-dependent protein kinases (cdks). We have investigated which component in the cyclin-cdk complex determines its substrate specificity. The A- and B-type cyclin-cdk complexes phosphorylated histone H1 and their cyclin subunits in an indistinguishable manner, irrespective of the catalytic subunit, p33cdk2 or p34cdc2. In contrast, only the cyclin A-cdk complexes phosphorylated the Rb-related p107 protein in vitro. Likewise, binding studies revealed that cyclin A-cdk complexes bound stably to p107 in vitro, whereas cyclin B-cdk complexes did not detectably associate with p107, under identical assay conditions. Binding to p107 required both cyclin A and a cdk as neither subunit alone bound to p107. These results demonstrate that although the kinase subunit provides a necessary component for binding, it is the cyclin subunit that plays the critical role in targeting the complex to p107. Finally, we show that the cyclin A-p33cdk2 complex phosphorylated p107 in vitro at most of its sites that are also phosphorylated in human cells, suggesting that the cyclin A-p33cdk2 complex is a major kinase for p107 in vivo.  相似文献   

16.
17.
In order to elucidate the mechanisms by which estrogens and antiestrogens modulate the growth of breast cancer cells, we have characterized the changes induced by estradiol that occur during the G1 phase of the cell cycle of MCF-7 human mammary carcinoma cells. Addition of estradiol relieves the cell cycle block created by tamoxifen treatment, leading to marked activation of cyclin E-cdk2 complexes and phosphorylation of the retinoblastoma protein within 6 h. Cyclin D1 levels increase significantly while the levels of cyclin E, cdk2, and the p21 and p27 cdk inhibitors are relatively constant. However, the p21 cdk inhibitor shifts from its association with cyclin E-cdk2 to cyclin D1-cdk4, providing an explanation for the observed activation of the cyclin E-cdk2 complexes. These results support the notion that cyclin D1 has an important role in steroid-dependent cell proliferation and that estrogen, by regulating the activities of G1 cyclin-dependent kinases, can control the proliferation of breast cancer cells.  相似文献   

18.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

19.
The assembly of functional holoenzymes composed of regulatory D-type cyclins and cyclin-dependent kinases (cdks) is rate limiting for progression through the G1 phase of the mammalian somatic cell cycle. Complexes between D-type cyclins and their major catalytic subunit, cdk4, are catalytically inactive until cyclin-bound cdk4 undergoes phosphorylation on a single threonyl residue (Thr-172). This step is catalyzed by a cdk-activating kinase (CAK) functionally analogous to the enzyme which phosphorylates cdc2 and cdk2 at Thr-161/160. Here, we demonstrate that the catalytic subunit of mouse cdc2/cdk2 CAK (a 39-kDa protein designated p39MO15) can assemble with a regulatory protein present in either insect or mammalian cells to generate a CAK activity capable of phosphorylating and enzymatically activating both cdk2 and cdk4 in complexes with their respective cyclin partners. A newly identified 37-kDa cyclin-like protein (cyclin H [R. P. Fisher and D. O. Morgan, Cell 78:713-724, 1994]) can assemble with p39MO15 to activate both cyclin A-cdk2 and cyclin D-cdk4 in vitro, implying that CAK is structurally reminiscent of cyclin-cdk complexes themselves. Antisera produced to the p39MO15 subunit can completely deplete mammalian cell lysates of CAK activity for both cyclin A-cdk2 and cyclin D-cdk4, with recovery of activity in the resulting immune complexes. By using an immune complex CAK assay, CAK activity for cyclin A-cdk2 and cyclin D-cdk4 was detected both in quiescent cells and invariantly throughout the cell cycle. Therefore, although it is essential for the enzymatic activation of cyclin-cdk complexes, CAK appears to be neither rate limiting for the emergence of cells from quiescence nor subject to upstream regulatory control by stimulatory mitogens.  相似文献   

20.
Cell cycle regulatory proteins have been characterized in somatic cells and exhibit phase-specific expression patterns. Changes in expression of these regulatory proteins have not been clearly characterized in early preimplantation mouse embryos. This study utilized indirect immunofluorescence to determine the expression pattern of G1/S phase cyclins D and E; S, G2/M phase cyclins A and B1, and cdk 2 during the first three cell cycles of mouse embryo development. Cyclin D demonstrated low expression throughout the first cell cycle but had a somatic-like pattern of expression in cycles 2 and 3 with peak expression at G1 declining through S phase to a low during G2. Cyclin E was present at peak levels in G1 declining through S to a low in G2 during both the first and third cell cycles, but remained at moderate levels during the entire second cell cycle. Cyclin A was maintained at moderate levels throughout the first two cell cycles but showed a somatic-like pattern with a low level in G1 increasing during S phase with peak levels during G2 of the third cell cycle. Cyclin B consistently demonstrated a pattern opposite to a somatic G2/M cyclin, with peak levels in G1 declining through S phase to a low in G2 during each of the three cell cycles examined. Cdk 2 was present at consistent levels during G1 and S phases of all three cell cycles declining slightly in G2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号