首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2(k) mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2(k) mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.  相似文献   

2.
Acute and chronic demyelination are hallmarks of CNS infection by the neurotropic JHM strain of mouse hepatitis virus. Although infectious virus is cleared by CD8+ T cells, both viral RNA and activated CD8+ T cells remain in the CNS during persistence potentially contributing to pathology. To dissociate immune from virus-mediated determinants initiating and maintaining demyelinating disease, mice were infected with two attenuated viral variants differing in a hypervariable region of the spike protein. Despite similar viral replication and tropism, one infection was marked by extensive demyelination and paralysis, whereas the other resulted in no clinical symptoms and minimal neuropathology. Mononuclear cells from either infected brain exhibited virus specific ex vivo cytolytic activity, which was rapidly lost during viral clearance. As revealed by class I tetramer technology the paralytic variant was superior in inducing specific CD8+ T cells during the acute disease. However, after infectious virus was cleared, twice as many virus-specific IFN-gamma-secreting CD8+ T cells were recovered from the brains of asymptomatic mice compared with mice undergoing demyelination, suggesting that IFN-gamma ameliorates rather than perpetuates JHM strain of mouse hepatitis virus-induced demyelination. The present data thus indicate that in immunocompetent mice, effector CD8+ T cells control infection without mediating either clinical disease or demyelination. In contrast, demyelination correlated with early and sustained infection of the spinal cord. Rapid viral spread, attributed to determinants within the spike protein and possibly perpetuated by suboptimal CD8+ T cell effector function, thus ultimately leads to the process of immune-mediated demyelination.  相似文献   

3.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

4.
Auto-antibodies induced by cancer represent promising sensitive biomarkers and probes to identify immunotherapeutic targets without immunological tolerance. Surprisingly few epitopes for such auto-antibodies have been identified to date. Recently, a cancer-specific syngeneic murine monoclonal antibody 237, developed to a spontaneous murine fibrosarcoma, was shown to be directed to murine podoplanin (OTS8) with truncated Tn O-glycans. Our understanding of such cancer-specific auto-antibodies to truncated glycoforms of glycoproteins is limited. Here we have investigated immunogenicity of a chemoenzymatically produced Tn-glycopeptide derived from the putative murine podoplanin O-glycopeptide epitope. We found that the Tn O-glycopeptide was highly immunogenic in mice and produced a Tn-glycoform specific response with no reactivity against unglycosylated peptides or the O-glycopeptide with extended O-glycan (STn and T glycoforms). The immunodominant epitope was strictly dependent on the peptide sequence, required Tn at a specific single Thr residue (Thr77), and antibodies to the epitope were not found in naive mice. We further tested a Tn O-glycopeptide library derived from human podoplanin by microarray analysis and demonstrated that the epitope was not conserved in man. We also tested human cancer sera for potential auto-antibodies to similar epitopes, but did not detect such antibodies to the Tn-library of podoplanin. The reagents and methods developed will be valuable for further studies of the nature and timing of induction of auto-antibodies to distinct O-glycopeptide epitopes induced by cancer. The results demonstrate that truncated O-glycopeptides constitute highly distinct antibody epitopes with great potential as targets for biomarkers and immunotherapeutics.  相似文献   

5.
Both CD4(+) and CD8(+) T cells are required for clearance of the murine coronavirus mouse hepatitis virus (MHV) during acute infection. We investigated the effects of an epitope-specific CD8(+) T-cell response on acute infection of MHV, strain A59, in the murine CNS. Mice with CD8(+) T cells specific for gp33-41 (an H-2D(b)-restricted CD8(+) T-cell epitope derived from lymphocytic choriomeningitis glycoprotein) were infected with a recombinant MHV-A59, also expressing gp33-41, as a fusion protein with enhanced green fluorescent protein (EGFP). By 5 days postinfection, these mice showed significantly (approximately 20-fold) lower titers of infectious virus in the brain compared to control mice. Furthermore mice with gp33-41-specific CD8(+) cells exhibited much reduced levels of viral antigen in the brain as measured by immunohistochemistry using an antibody directed against viral nucleocapsid. More than 90% of the viruses recovered from brain lysates of such protected mice, at 5 days postinfection, had lost the ability to express EGFP and had deletions in their genomes encompassing EGFP and gp33-41. In addition, genomes of viruses from about half the plaques that retained the EGFP gene had mutations within the gp33-41 epitope. On the other hand, gp33-41-specific cells failed to protect perforin-deficient mice from infection by the recombinant MHV expressing gp33, indicating that perforin-mediated mechanisms were needed. Virus recovered from perforin-deficient mice did not exhibit loss of EGFP expression and the gp33-41 epitope. These observations suggest that the cytotoxic T-cell response to gp33-41 exerts a strong immune pressure that quickly selects epitope escape mutants to gp33-41.  相似文献   

6.
Immunotherapy of established solid tumors is rarely achieved, and the mechanisms leading to success remain to be elucidated. We previously showed that extended control of advanced-stage autochthonous brain tumors is achieved following adoptive transfer of naive C57BL/6 splenocytes into sublethally irradiated line SV11 mice expressing the SV40 T Ag (T Ag) oncoprotein, and was associated with in vivo priming of CD8(+) T cells (T(CD8)) specific for the dominant epitope IV (T Ag residues 404-411). Using donor lymphocytes derived from mice that are tolerant to epitope IV or a newly characterized transgenic mouse line expressing an epitope IV-specific TCR, we show that epitope IV-specific T(CD8) are a necessary component of the donor pool and that purified naive epitope IV-specific T(CD8) are sufficient to promote complete and rapid regression of established tumors. While transfer of naive TCR-IV cells alone induced some initial tumor regression, increased survival of tumor-bearing mice required prior conditioning of the host with a sublethal dose of gamma irradiation and was associated with complete tumor eradication. Regression of established tumors was associated with rapid accumulation of TCR-IV T cells within the brain following initial priming against the endogenous T Ag in the peripheral lymphoid organs. Additionally, persistence of functional TCR-IV cells in both the brain and peripheral lymphoid organs was associated with long-term tumor-free survival. Finally, we show that production of IFN-gamma, but not perforin or TNF-alpha, by the donor lymphocytes is critical for control of autochthonous brain tumors.  相似文献   

7.
Pulmonary exposure to Aspergillus fumigatus has been associated with morbidity and mortality, particularly in immunocompromised individuals. A. fumigatus conidia produce β-glucan, proteases, and other immunostimulatory factors upon germination. Murine models have shown that the ability of A. fumigatus to germinate at physiological temperature may be an important factor that facilitates invasive disease. We observed a significant increase in IFN-γ-producing CD8(+) T cells in bronchoalveolar lavage fluid (BALF) of immunocompetent mice that repeatedly aspirated A. fumigatus conidia in contrast to mice challenged with A. versicolor, a species that is not typically associated with invasive, disseminated disease. Analysis of tissue sections indicated the presence of germinating spores in the lungs of mice challenged with A. fumigatus, but not A. versicolor. Airway IFN-γ(+)CD8(+) T-cells were decreased and lung germination was eliminated in mice that aspirated A. fumigatus conidia that were formaldehyde-fixed or heat-inactivated. Furthermore, A. fumigatus particles exhibited greater persistence in the lungs of recipient mice when compared to non-viable A. fumigatus or A. versicolor, and this correlated with increased maintenance of airway memory-phenotype CD8(+) T cells. Therefore, murine airway CD8(+) T cell-responses to aspiration of Aspergillus conidia may be mediated in part by the ability of conidia to germinate in the host lung tissue. These results provide further evidence of induction of immune responses to fungi based on their ability to invade host tissue.  相似文献   

8.
Failure of the adaptive immune response to control infection with the hepatitis C virus (HCV) can result from mutational escape in targeted T-cell epitopes. Recent studies suggest that T-cell immune pressure is an important factor in the evolution of the nonstructural proteins in HCV. The aim of this study was to characterize the forces that contribute to viral evolution in an HLA-A*01-restricted epitope in HCV NS3. This epitope represents a potentially attractive target for vaccination strategies since it is conserved across all genotypes. In our cohort of subjects with chronic HCV infection (genotype 1b or 3a), it is a frequently recognized CD8 epitope in HLA-A*01-positive subjects. Viral sequence data reveal that an escape variant is the dominant residue in both genotypes. The predominant Y1444F substitution seemingly impairs binding to the HLA-A*01 molecule, which may have an important impact on the ability to prime a functional CD8 response upon infection. Interestingly, a case of evolution toward the prototype sequence was observed during chronic infection, possibly because the helicase activity of the protein containing the Y1444F substitution is reduced compared to the prototype sequence. Comparison of HCV sequences from Asia and Europe suggests that the frequency of the HLA-A*01 allele in a population may influence the frequency of the escape variant in circulating strains. These data suggest a complex interaction of multiple forces shaping the evolution of HCV in which immune pressure both within the individual and also at the population level in addition to functional constraints are important contributing factors.  相似文献   

9.
Cystic fibrosis (CF), one of the most common lethal genetic diseases, is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel that, when phosphorylated, is gated by ATP. The third most common pathogenic mutation, a glycine-to-aspartate mutation at position 551 or G551D, shows a significantly decreased open probability (Po) caused by failure of the mutant channel to respond to ATP. Recently, a CFTR-targeted drug, VX-770 (Ivacaftor), which potentiates G551D-CFTR function in vitro by boosting its Po, has been approved by the FDA to treat CF patients carrying this mutation. Here, we show that, in the presence of VX-770, G551D-CFTR becomes responsive to ATP, albeit with an unusual time course. In marked contrast to wild-type channels, which are stimulated by ATP, sudden removal of ATP in excised inside-out patches elicits an initial increase in macroscopic G551D-CFTR current followed by a slow decrease. Furthermore, decreasing [ATP] from 2 mM to 20 µM resulted in a paradoxical increase in G551D-CFTR current. These results suggest that the two ATP-binding sites in the G551D mutant mediate opposite effects on channel gating. We introduced mutations that specifically alter ATP-binding affinity in either nucleotide-binding domain (NBD1 or NBD2) into the G551D background and determined that this disease-associated mutation converts site 2, formed by the head subdomain of NBD2 and the tail subdomain of NBD1, into an inhibitory site, whereas site 1 remains stimulatory. G551E, but not G551K or G551S, exhibits a similar phenotype, indicating that electrostatic repulsion between the negatively charged side chain of aspartate and the γ-phosphate of ATP accounts for the observed mutational effects. Understanding the molecular mechanism of this gating defect lays a foundation for rational drug design for the treatment of CF.  相似文献   

10.
CTL directed against the Moloney murine leukemia virus (MuLV) epitope SSWDFITV recognize Moloney MuLV-induced tumor cells, but do not recognize cells transformed by the closely related Friend MuLV. The potential Friend MuLV epitope has strong sequence homology with Moloney MuLV and only differs in one amino acid within the CTL epitope and one amino acid just outside the epitope. We now show that failure to recognize Friend MuLV-transformed tumor cells is based on a defect in proteasome-mediated processing of the Friend epitope which is due to a single amino acid substitution (N-->D) immediately flanking the C-terminal anchor residue of the epitope. Proteasome-mediated digestion analysis of a synthetic 26-mer peptide derived from the Friend sequence shows that cleavage takes place predominantly C-terminal of D, instead of V as is the case for the Moloney MuLV sequence. Therefore, the C terminus of the epitope is not properly generated. Epitope-containing peptide fragments extended with an additional C-terminal D are not efficiently translocated by TAP and do not show significant binding affinity to MHC class I-Kb molecules. Thus, a potential CTL epitope present in the Friend virus sequence is not properly processed and presented because of a natural flanking aspartic acid that obliterates the correct C-terminal cleavage site. This constitutes a novel way to subvert proteasome-mediated generation of proper antigenic peptide fragments.  相似文献   

11.
Leptospirosis is an important zoonosis in humans. Immunity against leptospiral infection was thought to be primarily humoral, and limited studies have addressed the role of CD8+ T cells. Leptospiral immunoglobulin-like protein A (LigA) is an important protective antigen of Leptospira and a potential target for Leptospira-specific cell-mediated immunity. In this study, twenty LigA-derived peptides were tested their binding affinity and stability for the HLA-A*0201 molecule. Peptides with high binding affinity and stability for HLA-A*0201 were then assessed their capacity to elicit specific cytotoxic T-lymphocyte (CTL) responses using cytotoxicity, ELISPOT assays for IFN-γ and HLA-A*0201-peptide tetramer assays. We identified a HLA-A*0201-restricted epitope, LigA305–313 KLIVTPAAL in Leptospira LigA. CTLs specific for LigA305–313 were elicited both in HLA-A2.1/Kb transgenic mice and in patients with a clinical and/or laboratory diagnosis of leptospirosis. Staining of the HLA-A*0201–LigA305–313 tetramer revealed the presence of LigA305–313-specific CTLs in peripheral blood mononuclear cells (PBMCs) sourced from five patients infected with three different serovars of Leptospira. In conclusion, we report the existence of specific cytotoxic CD8+ T cells in patients with leptospirosis and we suggest that the newly identified epitope, LigA305–313, will be helpful in enhancing the understanding of the mechanism of immunity to leptospirosis.  相似文献   

12.
CD8+ T cells are important for clearance of neurotropic mouse hepatitis virus (MHV) strain A59, although their possible role in A59-induced demyelination is not well understood. We developed an adoptive-transfer model to more clearly elucidate the role of virus-specific CD8+ T cells during the acute and chronic phases of infection with A59 that is described as follows. C57BL/6 mice were infected with a recombinant A59 virus expressing the gp33 epitope, an H-2Db-restricted CD8+ T-cell epitope encoded in the glycoprotein of lymphocytic choriomeningitis virus, as a fusion with the enhanced green fluorescent protein (RA59-gfp/gp33). P14 splenocytes (transgenic for a T-cell receptor specific for the gp33 epitope) were transferred at different times pre- and postinfection (p.i.). Adoptive transfer of P14 splenocytes 1 day prior to infection with RA59-gfp/gp33, but not control virus lacking the gp33 epitope, RA59-gfp, reduced weight loss and viral replication and spread in the brain and to the spinal cord. Furthermore, demyelination was significantly reduced compared to that in nonrecipients. However, when P14 cells were transferred on day 3 or 5 p.i., no difference in acute or chronic disease was observed compared to that in nonrecipients. Protection in mice receiving P14 splenocytes prior to infection correlated with a robust gp33-specific immune response that was not observed in mice receiving the later transfers. Thus, an early robust CD8+ T-cell response was necessary to reduce virus replication and spread, specifically to the spinal cord, which protected against demyelination in the chronic phase of the disease.  相似文献   

13.
Apoptosis is critical for the development and maintenance of the immune system. The proapoptotic Bcl-2 family member Bim is important for normal immune system homeostasis. Although previous experiments have shown that Bim is critical for the apoptosis of antigen-specific CD8(+) T cells during acute viral infection, the role of Bim during chronic viral infection is unclear. Using lymphocytic choriomeningitis virus clone 13 infection of mice, we demonstrate a role for Bim in CD8(+) T-cell apoptosis during chronic viral infection. Enumeration of antigen-specific CD8(+) T cells by major histocompatibility complex class I tetramer staining revealed that CD8(+) D(b)NP396-404(+) T cells, which undergo extensive deletion in wild-type mice, exhibited almost no decrease in Bim mutant mice. This contrasts with CD8(+) D(b)GP33-41(+) and CD8(+) D(b)GP276-286(+) T cells that underwent similar decreases in numbers in both Bim mutant and wild-type mice. Increased numbers of CD8(+) D(b)NP396-404(+) T cells in Bim mutant mice were due to lack of apoptosis and could not be explained by altered proliferation, differential homing to tissues, or increased help from CD4(+) T cells. When viral titers were examined, high levels were initially observed in both groups, but in Bim mutant mice, clearance from the spleen and sera was slightly accelerated. These experiments demonstrate the critical role of Bim during chronic viral infection to down-regulate CD8(+) T-cell responses and have implications for designing strategies for optimizing immunotherapies during situations where antigen persists, such as chronic infection, autoimmune syndromes, and cancer.  相似文献   

14.
The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2(-) MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma-associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load.  相似文献   

15.
We have identified an HLA-A2-restricted CD8(+) T-cell epitope, FLYALALLL, in the Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2), an important target antigen in the context of EBV-associated malignancies. This epitope is TAP independent, like other hydrophobic LMP2-derived epitopes, but uniquely is dependent upon the immunoproteasome for its generation.  相似文献   

16.
Yersinia heat-shock protein 60 (Ye-hsp60) has recently been found to be a dominant CD4 and CD8 T cell Ag in Yersinia-triggered reactive arthritis. The nature of this response with respect to the epitopes recognized and functional characteristics of the T cells is largely unknown. CD4+ T cell clones specific for Ye-hsp60 were raised from synovial fluid mononuclear cells from a patient with Yersinia-triggered reactive arthritis. and their specificity was determined using three recombinant Ye-hsp60 fragments, overlapping 18-mer synthetic peptides as well as truncated peptides. Functional characteristics were assessed by cytokine secretion analysis in culture supernatants after specific antigenic stimulation. Amino acid positions relevant for T cell activation were detected by single alanine substitutions within the epitopes. Fragment II comprising amino acid sequence 182-371 was recognized by the majority of clones. All these clones were specific for peptide 319-342. Th1 clones and IL-10-secreting clones occurred in parallel, sometimes with the same fine specificity. The 12-mer core epitope 322-333 is a degenerate MHC binder and is presented to some T cell clones in a "promiscuous" manner. This epitope is almost identical with a B27-restricted CTL epitope of Ye-hsp60. Cross-reactivity of Ye-hsp60-specific T cell clones with self-hsp60 was not observed. In conclusion, an interesting Ye-hsp60 T cell epitope has been identified and characterized. It remains to be determined whether this epitope is also relevant in other reactive arthritis patients.  相似文献   

17.
The BALB/cByJ mouse strain displays an immunodominant T cell response directed at the same CD4(+) T cell epitope peptide region in human IFN-beta, as detected in a human population-based assay. BALB/cByJ mice also recognize a second region of the protein with a lesser magnitude proliferative response. Critical residue testing of the immunodominant peptide showed that both BALB/cByJ mice and the human population response were dependent on an isoleucine residue at position 129. A variant IFN-beta molecule was constructed containing the single amino acid modification, I129V, in the immunodominant epitope. The variant displayed 100% of control antiproliferation activity. Mice immunized with unmodified IFN-beta responded weakly in vitro to the I129V variant. However, BALB/cByJ mice immunized with the I129V variant were unable to respond to either the I129V variant or the unmodified IFN-beta molecule by either T cell proliferation or Ag-specific IgG1 Ab production. This demonstrates that a single amino acid change in an immunodominant epitope can eliminate an immune response to an otherwise intact therapeutic protein. The elimination of the immunodominant epitope response also eliminated the response to the subdominant epitope in the protein. Modifying functionally immunodominant T cell epitopes within proteins may obviate the need for additional subdominant epitope modifications.  相似文献   

18.
The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86(-/-) mice. In the absence of CD80/CD86, primary antiviral CD8(+) T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8(+) T cells were impaired in IFN-gamma production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.  相似文献   

19.
DNA sequences were determined for three cDNA clones encoding vesicular stomatitis virus glycoproteins from the tsO45 mutant (which encodes a glycoprotein that exhibits temperature-sensitive cell-surface transport), the wild-type parent strain, and a spontaneous revertant of tsO45. The DNA sequence analysis showed that as many as three amino acid changes could be responsible for the transport defect. By recombining the cDNA clones in vitro and expressing the recombinants in COS cells, we were able to trace the critical lesion in tsO45 to a single substitution of a polar amino acid (serine) for a hydrophobic amino acid (phenylalanine) in a hydrophobic domain. We suggest that this nonconservative substitution may block protein transport by causing protein denaturation at the nonpermissive temperature. Comparison of the predicted glycoprotein sequences from two vesicular stomatitis virus strains suggests a possible basis for the differential carbohydrate requirement in transport of the two glycoproteins.  相似文献   

20.
Following infection by human T cell lymphotrophic virus-I (HTLV-I), high frequencies of polyclonal Tax11-19-reactive CD8(+) T cells can be detected in the peripheral blood. To investigate whether there are differences in the effector functions of these cells, we generated a panel of Tax11-19-reactive T cell clones by single cell sorting of HLA-A2/Tax11-19 tetramer binding CD8(+) T cells followed by repeated stimulation with PHA and IL-2. Examination of the TCRs revealed 17 different T cell clones with unique clonal origins. Nine representative CD8(+) T cell clones showed a similar cytotoxic dose-response activity against Ag-pulsed target cells, even though they express different TCRs. This cytotoxic effector function was not influenced by the engagement of either CD28 or CD2 costimulatory molecules. In contrast to the cytotoxic activity, qualitatively different degrees of proliferative response and cytokine secretion were observed among T cell clones of different clonal origin. The induction of proliferation and cytokine secretion required the engagement of costimulatory molecules, particularly CD2-LFA-3 interaction. These results indicate that functionally diverse, polyclonal CTL populations can be activated specific to a single immunodominant viral epitope; they can manifest virtually identical cytotoxic effector function but have marked differences in proliferation and cytokine secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号