首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage contact geometry, along with joint loading, can play an important role in determining local articular cartilage tissue stress. Thus individual variations in cartilage thickness can be associated with both individual variations in joint loading associated with activities of daily living as well as individual differences in the anatomy of the contacting surfaces of the joint. The purpose of this study was to isolate the relationship between cartilage thickness predicted by individual variations in contact surface geometry based on the radii of the femur and tibia vs. cartilage thickness predicted by individual variations in joint loading. Knee magnetic resonance (MR) images and the peak knee adduction moments during walking were obtained from 11 young healthy male subjects (age 30.5+/-5.1 years). The cartilage thicknesses and surface radii of the femoral and tibial cartilage were measured in the weight-bearing regions of the medial and lateral compartments of three-dimensional models from the MR images. The ratio of contact pressure between the medial and lateral compartments was calculated from the radii of tibiofemoral contact surface geometries. The results showed that the medial to lateral pressure ratios were not correlated with the medial to lateral cartilage thickness ratios. However, in general, pressure was higher in the lateral than medial compartments and cartilage was thicker in the lateral than medial compartments. The peak knee adduction moment showed a significant positive linear correlation with medial to lateral thickness ratio in both femur (R(2)=0.43,P<0.01) and tibia (R(2)=0.32,P<0.01). The results of this study suggest that the dynamics of walking is an important factor to describe individual differences in cartilage thickness for normal subjects.  相似文献   

2.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   

3.
Site-specific and depth-dependent properties of cartilage were implemented within a finite element (FE) model to determine if compositional or structural changes in the tissue could explain site-specific alterations of chondrocyte deformations due to cartilage loading in rabbit knee joints 3 days after a partial meniscectomy (PM). Depth-dependent proteoglycan (PG) content, collagen content and collagen orientation in the cartilage extracellular matrix (ECM), and PG content in the pericellular matrix (PCM) were assessed with microscopic and spectroscopic methods. Patellar, femoral groove and samples from both the lateral and medial compartments of the femoral condyle and tibial plateau were extracted from healthy controls and from the partial meniscectomy group. For both groups and each knee joint site, axisymmetric FE models with measured properties were generated. Experimental cartilage loading was applied in the simulations and chondrocyte volumes were compared to the experimental values. ECM and PCM PG loss occurred within the superficial cartilage layer in the PM group at all locations, except in the lateral tibial plateau. Collagen content and orientation were not significantly altered due to the PM. The FE simulations predicted similar chondrocyte volume changes and group differences as obtained experimentally. Loss of PCM fixed charge density (FCD) decreased cell volume loss, as observed in the medial femur and medial tibia, whereas loss of ECM FCD increased cell volume loss, as seen in the patella, femoral groove and lateral femur. The model outcome, cell volume change, was also sensitive to applied tissue geometry, collagen fibril orientation and loading conditions.  相似文献   

4.
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle–tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.  相似文献   

5.
We conducted a longitudinal study (duration 2 years), including 294 individuals (mean age 45 years, 58% female), in order to examine associations between meniscal extrusion, knee structure, radiographic changes and risk factors for osteoarthritis (OA) in a largely non-osteoarthritic cohort. Meniscal extrusion, tibiofemoral cartilage defect score and cartilage volume, and tibial plateau bone area were determined using T1-weighted fat-saturated magnetic resonance imaging. At baseline the presence of medial meniscal extrusion was significantly associated with body mass index (odds ratio [OR] per kg/m2 = 1.13, 95% confidence interval [CI] = 1.02-1.25), past knee injury (positive versus negative history: OR = 3.73, 95% CI = 1.16-11.97), medial tibial bone area (OR per cm2 = 1.37, 95% CI = 1.02-1.85), and osteophytes (OR per grade = 4.89, 95% CI = 1.59-15.02). Two-year longitudinal data revealed that medial meniscal extrusion at baseline was associated with a greater rate of loss of medial tibiofemoral cartilage volume (extrusion versus no extrusion: -1.4%/year; P < 0.05) and greater risk for increased medial femoral cartilage defects (OR = 2.59, 95% CI = 1.14-5.86) and lateral tibial cartilage defects (OR = 2.64, 95% CI = 1.03-6.76). However, the latter two associations became nonsignificant after adjustment for tibial bone area and osteophytes. This study suggests that increasing body mass index and bone size, past knee injury, and osteophytes may be causally related to meniscal extrusion. Most importantly, meniscal extrusion at baseline is associated with greater loss of knee cartilage over 2 years, and this seems to be mediated mostly by subchondral bone changes, suggesting extrusion represents one pathway between bone expansion and cartilage loss.  相似文献   

6.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

7.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

8.
Collagen fibrils of articular cartilage have specific depth-dependent orientations and the fibrils bend in the cartilage surface to exhibit split-lines. Fibrillation of superficial collagen takes place in osteoarthritis. We aimed to investigate the effect of superficial collagen fibril patterns and collagen fibrillation of cartilage on stresses and strains within a knee joint. A 3D finite element model of a knee joint with cartilage and menisci was constructed based on magnetic resonance imaging. The fibril-reinforced poroviscoelastic material properties with depth-dependent collagen orientations and split-line patterns were included in the model. The effects of joint loading on stresses and strains in cartilage with various split-line patterns and medial collagen fibrillation were simulated under axial impact loading of 1000 N. In the model, the collagen fibrils resisted strains along the split-line directions. This increased also stresses along the split-lines. On the contrary, contact and pore pressures were not affected by split-line patterns. Simulated medial osteoarthritis increased tissue strains in both medial and lateral femoral condyles, and contact and pore pressures in the lateral femoral condyle. This study highlights the importance of the collagen fibril organization, especially that indicated by split-line patterns, for the weight-bearing properties of articular cartilage. Osteoarthritic changes of cartilage in the medial femoral condyle created a possible failure point in the lateral femoral condyle. This study provides further evidence on the importance of the collagen fibril organization for the optimal function of articular cartilage.  相似文献   

9.
By generalizing a previous model proposed in the literature, a new spatial kinematic model of the knee joint passive motion is presented. The model is based on an equivalent spatial parallel mechanism which relies upon the assumption that fibers within the anterior cruciate ligament (ACL), the medial collateral ligament (MCL) and the posterior cruciate ligament (PCL) can be considered as isometric during the knee flexion in passive motion (virtually unloaded motion). The articular surfaces of femoral and tibial condyles are modelled as 3-D surfaces of general shapes. In particular, the paper presents the closure equations of the new mechanism both for surfaces represented by means of scalar equations that have the Cartesian coordinates of the points of the surface as variables and for surfaces represented in parametric form. An example of simulation is presented in the case both femoral condyles are modelled as ellipsoidal surfaces and tibial condyles as spherical surfaces. The results of the simulation are compared to those of the previous models and to measurements. The comparison confirms the expectation that a better approximation of the tibiofemoral condyle surfaces leads to a more accurate model of the knee passive motion.  相似文献   

10.
Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1 mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22 mm±±0.36 mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by −0.20 mm±±0.29 mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be determined reliably by single plane fluoroscopy analysis.  相似文献   

11.
The objective of the current study was to use fluoroscopy to accurately determine the three-dimensional (3D), in vivo, weight-bearing kinematics of 10 normal and five anterior cruciate ligament deficient (ACLD) knees. Patient-specific bone models were derived from computed tomography (CT) data. 3D computer bone models of each subject's femur, tibia, and fibula were recreated from the CT 3D bone density data. Using a model-based 3D-to-2D imaging technique registered CT images were precisely fit onto fluoroscopic images, the full six degrees of freedom motion of the bones was measured from the images. The computer-generated 3D models of each subject's femur and tibia were precisely registered to the 2D digital fluoroscopic images using an optimization algorithm that automatically adjusts the pose of the model at various flexion/extension angles. Each subject performed a weight-bearing deep knee bend while under dynamic fluoroscopic surveillance. All 10 normal knees experienced posterior femoral translation of the lateral condyle and minimal change in position of the medial condyle with progressive knee flexion. The average amount of posterior femoral translation of the lateral condyle was 21.07 mm, whereas the average medial condyle translation was 1.94 mm, in the posterior direction. In contrast, all five ACLD knees experienced considerable change in the position of the medial condyle. The average amount of posterior femoral translation of the lateral condyle was 17.00 mm, while the medial condyle translation was 4.65 mm, in the posterior direction. In addition, the helical axis of motion was determined between maximum flexion and extension. A considerable difference was found between the center of rotation locations of the normal and ACLD subjects, with ACLD subjects exhibiting substantially higher variance in kinematic patterns.  相似文献   

12.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

13.
The effect of femoral component malrotation on patellar biomechanics   总被引:1,自引:0,他引:1  
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components and may, therefore, reduce any associated patellofemoral maltracking. To test this hypothesis, we developed a dynamic model of quadriceps-driven open-kinetic-chain extension in a knee implanted with arthroplasty components. The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees. Knee kinematics and patellofemoral forces were measured after simulating malrotation (±3°) of the femoral component. Rotational alignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. External rotation of the femoral component increased patellofemoral lateral tilt, lateral shift, and lateral shear forces. Up to 21° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating platform does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. These results support the value of improving existing methodologies for accurate femoral component alignment in total knee arthroplasty.  相似文献   

14.
The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2 ± 9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD, 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R(2)=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis.  相似文献   

15.
The in situ mechanical conditions of cartilage in the articulated knee were quantified during joint loading. Six porcine knees were subjected to a 445 N compressive load while cartilage deformations and contact pressures were measured. From roentgenograms, cartilage thickness before and during loading allowed the calculation of tissue deformation on the lateral femoral condyle at different times during the loading process. Contact pressures on the articular surface were measured with miniature fiber-optic pressure transducers. Results showed that the medial side of the lateral femoral condyle had higher contact pressures, as well as deformations. To begin to correlate the pressures and resulting deformations, the intrinsic material properties of the cartilage on the lateral condyle were obtained from indentation tests. Data from four normal control specimens indicated that the aggregate modulus of the medial side was significantly higher than in other areas of the condyle. These experimental measures of the in situ mechanical conditions of articular cartilage can be combined with theoretical modeling to obtain valuable information about the relative contributions of the solid and fluid phases to supporting the applied load on the cartilage surface (see Part II).  相似文献   

16.
Osteochondrosis dissecans (OD) is a process of subchondral bone necrosis occurring predominantly in young individuals at specific sites. The aetiology of this disease remains controversial with mechanical processes due to trauma and/or ischaemic factors being proposed. This study aims at explaining the aetiology of OD in the knee joint as a result of the particular deformation of the condyles. A finite element analysis of the distal third of the femur was performed. A three-dimensional model was developed based on computed tomography scans of a normal femur, consisting of cortical bone, cancellous bone and articular cartilage. This model was subjected to physiological loads at 0, 30, 60 and 90 degrees of knee flexion. A complex deformation was found within each condyle as well as between the two condyles. Both medial and lateral condyles are deformed in the medio-lateral direction and at the same time compressed between the patella and the tibia in the antero-posterior direction. This effect is highest at 60 degrees of knee flexion. In both planes, the medial condyle is distorted more than the lateral one. Strain concentration in the subchondral bone facing the patella varies with flexion, especially for angles exceeding 60 degrees. The deformation of the femur in the predominant locus of OD in the medial condyle exceeds that of the lateral condyle considerably. The analysis shows that repeated vigorous exercise including extreme knee flexion may produce rapidly changing strains which in turn could ultimately be responsible for local subchondral bone collapse.  相似文献   

17.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

18.
Few methods exist to study cartilage mechanics in small animal joints due to the difficulties associated with handling small tissue samples. In this study, we apply an osmotic loading method to quantify the intrinsic material properties of articular cartilage in small animal joints. Cartilage samples were studied from the femoral condyle and tibial plateau of two-month old guinea pigs. Swelling strains were measured using confocal fluorescence scanning microscopy in samples subjected to osmotic loading. A histochemical staining method was developed and calibrated for quantification of negative fixed charge density in guinea pig cartilage. Site-matched swelling strain data and fixed charge density values were then used with a triphasic theoretical model for cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. Moduli obtained in this study (7.2 MPa femoral condyle; 10.8 MPa, tibial plateau) compare well with previously reported values for the tensile moduli of human and other animal cartilages determined from uniaxial tension experiments. This study provides the first available data for material properties and fixed charge density in cartilage from the guinea pig knee and suggests a promising method for tracking changes in cartilage mechanics in small animal models of degeneration.  相似文献   

19.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

20.
The knee is often a site of injury that can often lead to a chronic disease known as osteoarthritis (OA). The disease may be initiated, in part, by acute injuries to joint cartilage and its cells. In a recent study by this laboratory, using Flemish Giant rabbits, an impact compressive load on the tibial femoral joint was shown to cause significant levels of acute damage to chondrocytes in cartilage of the medial and lateral tibial plateaus. In the current study, using the same model, histological and mechanical data from the plateaus were documented at 6 and 12 months post impact, and compared to the unimpacted control limbs and a limb from unimpacted, control animals. The mechanical properties of cartilage were measured with indentation relaxation tests on the medial and lateral plateaus in regions covered and uncovered by the meniscus. The histological studies on impacted limbs showed surface lesions on both plateaus, thickening of the underlying subchondral bone at 12 months and numerous occult microcracks at the calcified cartilage–subchondral bone interface at 6 and 12 months, without significant changes in cartilage thickness or its mechanical properties versus controls. Yet, there was an increase in both the matrix and fiber moduli and a decrease in the permeability of uncovered, medial plateau cartilage in both limbs of impacted animals between 6 and 12 months post impact that was not documented in control animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号