首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D A Jans  B A Hemmings 《FEBS letters》1986,205(1):127-131
Mutants of the pig kidney cell line, LLC-PK1, affected in cAMP metabolism, were examined for cAMP-dependent protein kinase (cAMP-PK) activity and for cAMP-mediated induction of urokinase-type plasminogen activator (uPA). The FIB4 and FIB6 mutant cell lines possessed about 10% parental levels of cAMP-PK activity and concomitantly reduced uPA production (10-20% parental) in response to calcitonin, forskolin and 8-bromo cAMP. The FIB1, FIB2 and FIB5 mutant cell lines had about 70% parental levels of cAMP-PK and the synthesis of uPA was 40-60% parental. Thus, cAMP-mediated induction of uPA showed a dependence on the absolute levels of cAMP-PK. However, uPA synthesis in response to phorbol-12-myristate-13-acetate by all of the mutants was similar to parental, which indicates that enzyme induction mediated by phorbol esters does not involve cAMP or cAMP-PK.  相似文献   

2.
The activation of cyclic AMP-dependent protein kinase (cAMP-PK) in vivo was studied in LLC-PK1 pig kidney cells and the mutant cell lines M18 and FIB5, which have total levels of cAMP-PK catalytic-subunit and regulatory-subunit activities comparable with those of parental cells. The extent of cAMP-PK activation (release of active catalytic subunit from the holoenzyme) was directly correlated with the cellular cyclic AMP concentration in LLC-PK1 cells. In LLC-PK1 cells, as well as in the mutants M18 and FIB5, the extent of the induction of urokinase-type plasminogen activator (uPA) by the cyclic AMP-mediated effectors calcitonin, vasopressin and forskolin was directly correlated with the levels of activated catalytic subunit. The 'receptorless' mutant M18, which is impaired in calcitonin- and vasopressin-receptor function, did not show any activation of cAMP-PK or uPA production in response to either hormone, whereas cAMP-PK and uPA responses to forskolin were about 35% higher than in parental cells. Analysis of the FIB5-cell line revealed a lesion affecting the regulation of adenylate cyclase activity, whereby basal and stimulated (both receptor- and non-receptor-mediated) adenylate cyclase levels were less than 36% of those in parental cells. The activation of cAMP-PK in response to cyclic AMP effectors was similarly reduced, and uPA induction was concomitantly lower than that in parental cells. The results demonstrate the dependence of uPA induction by cyclic AMP effectors on dissociation of the cAMP-PK holoenzyme, implying the importance of activated free cAMP-PK catalytic subunit in this process. Thus it is concluded that the mutations in the cellular cyclic AMP-generating apparatus of the M18 and FIB5 cell lines impair uPA induction by preventing cAMP-PK activation.  相似文献   

3.
The precise mechanistic role of the cAMP-dependent protein kinase (cAMP-PK) in cAMP-mediated gene induction remains unclear. Renal epithelial cell mutants were compared to the LLC-PK1 parental cell line for induction of the cAMP-responsive urokinase-type plasminogen activator (uPA) gene, as quantitated by the technique of mRNA solution hybridization. The FIB4 and FIB6 mutants, which possess less than 10% parental cAMP-PK catalytic (C) subunit activity, showed markedly diminished uPA mRNA induction in response to agents elevating intracellular cAMP such as the cAMP analogue 8-bromo-cAMP and the adenylate cyclase-stimulating hormones vasopressin and calcitonin. In contrast, the mutant cells responded to a similar or greater extent than the parental cells in terms of uPA mRNA induction following treatment with the Ca2+/phospholipid-dependent protein kinase activator phorbol 12-myristate 13-acetate (PMA). Elevation of intracellular cAMP was found to induce a translocation of the cAMP-PK C subunit from the perinuclear Golgi region to the nucleus in both parental and mutant cell lines, as shown by immunocytochemical techniques. Results argue for the role of the cAMP-PK C subunit activity and possibly nuclear translocation of the C subunit in cAMP-mediated uPA induction, which is mechanistically distinct from the PMA-stimulated response.  相似文献   

4.
A novel "cAMP-resistant" variant of LLC-PK1 renal epithelial cells which is impaired in in vivo down-regulation of response following hormonal stimulation of adenylate cyclase (AC) is described. Compared to parental cells, the BIB27 mutant exhibited markedly higher in vivo activation of cAMP-dependent protein kinase (cAMP-PK) in response to the hormones salmon calcitonin (SCT) or [Arg8]-vasopressin (AVP) or the AC activator forskolin. The activation of cAMP-PK subsequent to agonist stimulation also persisted much longer in the mutant than in LLC-PK1 cells, although the cAMP-PK of BIB27 cells was normal in terms of both absolute levels and regulation by cAMP in vitro. Intracellular cAMP accumulation was also much higher in BIB27 than in LLC-PK1 cells following agonist stimulation. Production of cAMP could be detected in BIB27 cells even 12 h after treatment with AVP or SCT, whereas cAMP production in LLC-PK1 had returned to basal within 1 and 8 h, respectively. High levels of free cAMP-PK catalytic (C) subunit in BIB27 persisted even 12 h after hormone addition, meaning that the higher cAMP production in BIB27 did not result in the normal down-regulation of cAMP-PK C subunit levels. In vitro AC activity in BIB27 cell homogenates could be stimulated by hormones or receptor-independent agonists, but to a lesser extent than in LLC-PK1 cell homogenates. The SCT and AVP concentrations promoting half-maximal AC activation in BIB27 cells were about 10- and 3-fold higher than parental, respectively. BIB27 accordingly appeared to possess a mutation in AC responsible for the impairment of both in vitro response to agonists and the normal in vivo down-regulation processes following hormonal stimulation.  相似文献   

5.
A mutant LLC-PK1 cell line, M18, was isolated after a single treatment of the parent culture with N-methyl-N'-nitro-N-nitroso-guanidine. In contrast to LLC-PK1 cells, the mutant did not exhibit production of urokinase-type plasminogen activator (uPA) in response to the hormones calcitonin and vasopressin, but produced the expected levels of uPA upon stimulation by the receptor-independent adenylate cyclase activators forskolin and cholera toxin, as well as by the phosphodiesterase inhibitor isobutylmethylxanthine and the 8-bromo analogue of adenosine cyclic monophosphate, Br8cAMP. The patterns of activation of cAMP-dependent protein kinase were identical to those of uPA induction: calcitonin and vasopressin were without effect, but the response to all other agents was normal. In similar fashion, mutant cell homogenates displayed normal activation of adenylate cyclase upon treatment with sodium fluoride, forskolin, or the non-hydrolyzable GTP analogue guanosine 5'-[beta, gamma-imino]triphosphate, but were unresponsive to calcitonin or vasopressin. The ability of M18 cells to bind radioactively labelled calcitonin and vasopressin was measured. The mutant possessed less than 4% of the normal levels of the receptor binding activity for both hormones. Somatic cell hybrids formed between M18 and LLC-PK1 cells were found to retain normal hormone binding activity and responsiveness to hormones, indicating that the defect in M18 cells was recessive. M18 was concluded most probably to contain a single mutation impairing the function of two distinct polypeptide hormone receptors.  相似文献   

6.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C.  相似文献   

7.
8.
9.
The mutant LLC-PK1 cell lines FIB6 and FIB5/N4 were examined for responsiveness to the polypeptide hormones calcitonin and vasopressin. Both mutants exhibited little or no activation of adenylate cyclase or cAMP-dependent protein kinase (cAMP-PK) in response to calcitonin, but responded to vasopressin. Analysis of calcitonin receptor function demonstrated that both mutants bound less than 9 fmol 125I-labeled salmon calcitonin/mg cellular protein, which was about 1% of parental activity (642 fmol calcitonin bound/mg). Concomitant with reduced calcitonin binding, both mutants exhibited increased vasopressin binding (greater than 272 fmol [[3H]Arg]vasopressin bound/mg) compared to parental (166 fmol bound/mg). The concentration of vasopressin for half-maximal stimulation of adenylate cyclase in both mutants was comparable to that for LLC-PK1 cells (40 pM) and hence the increased binding activity was concluded to be due to increased numbers of functional vasopressin receptors in the mutants. Somatic cell hybrids formed between each mutant and LLC-PK1 cells exhibited normal hormone binding and activation of cAMP-PK in response to both vasopressin and calcitonin. The mutations affecting receptor function in FIB6 and FIB5/N4 were accordingly concluded to be recessive. Somatic cell hybrids between FIB6 and FIB5/N4 showed no complementation of the mutant phenotype, indicating that both cell lines were affected in the same gene. In contrast, somatic cell hybrids between FIB5/N4 and the 'receptorless' mutant M18 (which lacks functional calcitonin and vasopressin receptors) exhibited approximately the same responsiveness to vasopressin and to calcitonin as LLC-PK1. Complementation between two different mutations affecting polypeptide receptor function was thus observed. The results are discussed in terms of a proposed common pathway for processing of calcitonin and vasopressin receptors.  相似文献   

10.
The LLC-PK1 mutant cell lines FIB4 and FIB6 are affected in the catalytic (C) subunit of cAMP-dependent protein kinase (cAMP-PK) such that they possess less than 10% parental activity. However, by Western blot analysis they were shown to possess normal levels of C subunit protein. Somatic cell hybrids were derived between mutant and LLC-PK1 cells, and examined for complementation of the cAMP-PK lesion. Codominant expression of mutant and normal alleles was observed, in that somatic cell hybrids between FIB4 and LLC-PK1, and between FIB6 and LLC-PK1 cells, exhibited cAMP-PK activity 60-75% that of LLC-PK1 cells, intermediate between mutant and normal parental cell lines. The cAMP-PK of the FIB6 x LLC-PK1 and FIB4 x LLC-PK1 hybrids was examined by ion exchange chromatography. In contrast to the FIB6 and FIB4 mutants which lack an active Type I cAMP-PK, the hybrids retained levels of active Type I cAMP-PK greater than 30% that of LLC-PK1, concomitant with the retention of catalytic activity. It was concluded that the loss of Type I kinase in the FIB6 and FIB4 mutants is most likely a consequence of the lesion in the cAMP-PK C subunit. All somatic cell hybrids examined showed levels of cAMP-PK C subunit (as determined by Western blot analysis), and in vivo regulation of cAMP-PK activation (in response to hormonal or nonreceptor-mediated stimulation of adenylate cyclase), completely comparable to those of the parental LLC-PK1 cells. Hence, no aberrant regulation of either cAMP-PK subunit levels or cAMP-PK activities was evident in the somatic cells hybrids. All data were consistent with the hypothesis that FIB4 and FIB6 contain a structural mutation affecting the cAMP-PK catalytic subunit that is expressed phenotypically in the presence of the normal allele.  相似文献   

11.
A novel mutant of the LLC-PK1 renal epithelial cell line, VPR1, was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection using a photoactivatable vasopressin analogue [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine] vasopressin. The VPR1 mutant cell line possessed less than 5% parental V2 receptor binding for vasopressin but exhibited normal calcitonin receptor binding. In contrast to LLC-PK1 cells (wild type), VPR1 cells exhibited no response to vasopressin in terms of in vitro adenylate cyclase activation, in vivo cAMP production, or urokinase-type plasminogen activator induction. The responses of VPR1 cells to other agents, such as calcitonin, the adenylate cyclase activator forskolin, the GTP analogue guanosine 5'-[beta, gamma-imino] triphosphate, 8-bromo adenosine-3',5'-monophosphate were comparable to those of the parental cell line. Somatic cell hybrids were derived from the cell lines LLC-PK1 and VPR1 and analyzed for the dominance/recessiveness of the VPR1 mutant phenotype. Hybrids were found to possess normal vasopressin binding activity as well as functional responses to the hormone, indicating that the mutation affecting the V2 receptor in VPR1 cells is recessive. The VPR1 cell line may thus have application as a recipient for the expression of the V2 receptor gene using DNA-transfer.  相似文献   

12.
13.
14.
D A Jans  B A Hemmings 《FEBS letters》1991,281(1-2):267-271
The relationship between activation of the cAMP-dependent protein kinase (cAMP-PK) and ligand binding and internalization by the vasopressin renal (V2-type) receptor of LLC-PK1 renal epithelial cells was examined. Upon cAMP-PK activation through 1 h treatment with the cAMP analogue 8-bromo-cAMP (BrcA), a marked reduction in V2-receptor steady state number and internalization in LLC-PK1 cells was effected. In cells treated for 17 h with BrcA and hence down-regulated for cAMP-PK, the V2-receptor number was normal but internalization was markedly reduced. Cells of the LLC-PK1 mutant FIB4, which possesses about 10% parental cAMP-PK catalytic subunit activity, exhibited lower V2-receptor steady state number and internalization in comparison to untreated LLC-PK1 cells. A negative correlation was thus evident between cAMP-PK activation and V2-receptor number, and internalization. Phosphorylation by cAMP-PK may effect ligand-independent removal of receptor from the plasma membrane.  相似文献   

15.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit.  相似文献   

16.
17.
18.
The characteristics of the cyclic AMP-dependent protein kinase isoenzyme response to calcitonin stimulation have been studied in two human breast cancer cell lines, T47D and MCF 7. Both cell lines possess calcitonin receptors, a calcitonin-responsive adenylate cyclase and the two isoenzymes of the cyclic AMP-dependent protein kinase, types I and II. The adenylate cyclase also responds to prostaglandin E2. Acute activation of the cyclic AMP-dependent protein kinase isoenzymes was determined by using a modification of a multiple small anion exchange column method [Livesey, Kemp, Re, Partridge & Martin (1982) J. Biol. Chem. 257, 14983-14987]. Control experiments showed that post-extraction activation did not influence the data. Calcitonin caused a rapid, selective activation of isoenzyme II in the T 47D cells with half-maximal response at 10(-10)M, and persisting for at least 24h. In MCF 7 cells calcitonin also caused a highly selective activation of isoenzyme II with half-maximal response at 5 X 10(-11) M, but the response was transient with a return to basal isoenzyme activity by 4-6 h. At this time further addition of calcitonin did not restimulate the cyclic AMP-dependent kinase activity. In neither cell line did calcitonin treatment result in activation of isoenzyme I. Prostaglandin E2, on the other hand, the only significant alternative agonist of adenylate cyclase in T 47D cells, activated isoenzymes I and II to an equal extent in these cells, illustrating that two hormones activating adenylate cyclase in the one cell type might exert different effects by their selective actions upon protein kinase isoenzymes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号