首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thromboxane effects on canine trachealis neuromuscular function   总被引:3,自引:0,他引:3  
The objective of this study is to determine which inflammatory mediators had direct effects on canine trachealis muscle neuromuscular control to identify candidate mediators of the hyperresponsiveness observed in vitro after O3 exposure. Studies were carried out in the sucrose gap at 29 degrees C and in the muscle bath at 37 degrees C. Leukotriene (LT) B4, LTD4, and prostaglandin (PG) D2 had neither direct nor significant effects on the excitatory junction potentials (EJP's), the secondary membrane potential oscillations, or the associated contractions that followed field stimulation of cholinergic nerves. U 46619, a stable analogue of thromboxane (Tx) A2, enhanced (10(-10)-10(-7) M) the duration and the amplitude of secondary oscillations and associated contractions without affecting the EJP's. In the muscle bath, U 46619 enhanced field-stimulated contractions; this was antagonized competitively by SQ 29548. In both the sucrose gap and the muscle bath, higher concentrations (10(-9) M and higher) caused direct effects, small depolarizations, and contractions. These effects of U 46619 were unaffected by indomethacin or guanethidine but were abolished by SQ 29548, an antagonist selective at TxA2-PGH2 receptors. U 46619 at 10(-9) M did not affect electrical or mechanical responses to acetylcholine and at 10(-9) M did not increase the sensitivity to acetylcholine. Platelet-activating factor (PAF) was inactive in all muscle-bath and most sucrose-gap experiments. In 7 of 20 of the latter, it caused effects qualitatively like those of U 46619, but whether it acted through release of TxA2 could not be tested because of the rapid tachyphylaxis to PAF. We conclude that TxA2 may mediate the hyperresponsiveness found in vitro after O3 treatment.  相似文献   

2.
The effect of endothelin(ET) on adrenergic neurotransmission was examined in isolated perfused rat mesenteric arteries. Porcine ET(10(-12) to 10(-10)M) attenuated the pressor response to sympathetic nerve stimulation (NS). It also stimulated the release of prostaglandin E2 (PGE2), but its inhibition of the pressor response to NS was not affected by indomethacin treatment. ET also caused dose-dependent inhibition of [3H]norepinephrine release during NS. Higher doses of ET rather enhanced the pressor response to NS. These results suggest that ET inhibits presynaptic adrenergic neurotransmission without mediation of PGE2, while it potentiates the responsiveness of the postsynaptic alpha-adrenergic receptor. Thus ET appears to act directly on the neuroeffector junction as well as on the peripheral vasculature.  相似文献   

3.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10(-10)-10(-9)M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10(-5) M) and FPL55712 (10(-6) M). In doses over 10(-8)M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10(-5) or 5 x 10(-5) M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10(-9) M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 x 10(-7) M). However, indomethacin (10(-5) M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

4.
The relationships of the electrical to the mechanical responses of the canine trachealis muscle during stimulation of its cholinergic nerves or exposure to exogenous acetylcholine were recorded in the single or the double sucrose gap. At 27 degrees C, the responses to a train of stimuli consisted of a transient depolarization excitatory junction potential of 10-30 mV followed by fading oscillations and contractions. When stimulus parameters were varied in the single sucrose gap, contractions were more closely associated with the occurrence of and varied in duration with the oscillations rather than with the amplitude of the EJP. Acetylcholine superfused at a concentration of 10(-6) M for 30 s caused a prolonged depolarization of 10-20 mV, but a much larger contraction than could be elicited by nerve stimulation. None of the responses to acetylcholine was significantly affected by the Ca channel antagonists, nifedipine, nitrendipine, or verapamil in Ca channel blocking concentrations. When tissues were exposed to a Ca-free medium, the excitatory junction potentials and oscillations rapidly disappeared, but the electrical and mechanical responses to acetylcholine persisted and only gradually disappeared with repetitive exposures. Furthermore, in a medium with normal Ca2+ in the double sucrose gap, depolarization by 10-15 mV with an applied current caused no contraction, and repolarization to the normal membrane potential during acetylcholine-induced contraction caused no relaxation. Tetraethylammonium ion (20 mM) depolarized the membrane, increased membrane resistance, and enhanced the secondary oscillations and contractions after field stimulation. No other K(+)-channel blocker tested (Ba2+, apamin, 4-aminopyridine, glibenclamide, charybdotoxin) had the effect of prolonging secondary oscillations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This study was undertaken to assess the effects of exogenous alpha-agonists on the effector response to transmural nerve stimulation in canine saphenous vein rings. The response to a fixed train (5 s duration) of transmural nerve stimulation (8 Hz, 0.3 ms, 9 V) applied every 5 min was determined in the control state and in the presence of subthreshold (for contraction) concentrations of noradrenaline, adrenaline, clonidine, and methoxamine. The maximum potentiations achieved by the three drugs were 246.2 +/- 36.9, 220.5 +/- 38.8, 384.3 +/- 78.7, and 353.3 +/- 68.0%, respectively. The potentiation observed was significantly inhibited by indomethacin (10(-6) mol/L) and propranolol (5 X 10(-6) mol/L). Both indomethacin and propranolol potentiated the response to transmural nerve stimulation. The potentiation of the responses to transmural nerve stimulation by alpha-agonists suggests that, presynaptic alpha 2-inhibition by circulating catecholamines is likely to be of limited biological significance in modulating the effector responses in the canine saphenous vein.  相似文献   

6.
The effect of neurotensin on canine ileal circular muscle devoid of myenteric plexus was investigated using single and double sucrose gap techniques. Similar results were obtained with microelectrode techniques. Neurotensin caused a temperature-sensitive and dose-dependent biphasic response, an initial hyperpolarization associated with inhibition of contractile activity, followed by an excitatory phase, usually consisting of spike discharge and tonic and phasic contractions, for which depolarization was not required. Neither response was affected by tetrodotoxin, phentolamine, propranolol, or atropine. The hyperpolarization was associated with decreased membrane resistance, blocked by 10(-7) M apamin, and converted to tonic depolarization by apamin (10(-6) M). Tachyphylaxis to neurotensin occurred when the stimulation interval was less than 20 min. After Ca2+ depletion, depolarization was observed instead of the hyperpolarization; this depolarization was not affected by nitrendipine and was gradually abolished with repetitive stimulation at 20-min intervals. When Ca2+ was present, nifedipine did not alter the hyperpolarizing phase of the response but inhibited spiking and blocked all contractions. The excitatory phase of the response was enhanced by Bay K-8644. Neuromedin N elicited a response identical with that of neurotensin. The responses of the two peptides were completely cross tachyphylactic. Inhibitory junction potentials were not affected by neurotensin tachyphylaxis. It is concluded that neurotensin and neuromedin N activate apamin-sensitive, calcium-dependent potassium channels in circular muscle, causing membrane hyperpolarization and inhibition of muscle contraction. Release of intracellular calcium is involved in the activation of these potassium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study tested the hypothesis that the final mediator of nonadrenergic, noncholinergic (NANC) inhibitory junction potentials (ijps) and associated relaxation responses was nitric oxide (NO) or a related substance and not vasoactive intestinal polypeptide (VIP). We used opossum esophagus body circular muscle and canine intestine circular muscle. In both these tissues, ijps had reversal potentials near the potassium equilibrium potential, (EK); in esophagus the ijps were apamin insensitive, but in the intestine they were partially apamin sensitive. N omega-Nitro-L-arginine methyl ester (NAME) (10(-5) to 5 x 10(-4) M) abolished ijps in both tissues, an effect overcome by 10(-3) M L-arginine but not D-arginine. NAME increased input resistance of esophagus tissues in the double sucrose gap but caused no significant depolarization in the sucrose gap or in studies with microelectrodes. Contractions and basal tension were increased in both tissues by NAME. The apamin sensitive and insensitive ijp components in canine muscle were both abolished by NAME, but the time course of this abolition was different for the two components. Methylene blue (10-50 microM) with variable rapidity and extent inhibited ijps in both tissues, but L-arginine could not overcome this effect. Methylene blue, like NAME, did not depolarize detectably but enhanced the contractile activity. VIP (10(-6) M) had very small effects in both tissues, little or no hyperpolarization and increased input resistance in esophagus, these effects were not changed by NAME, and VIP did not affect ijps. We conclude that NO may be the final mediator of NANC-initiated inhibitory junction potentials in gastrointestinal circular smooth muscle.  相似文献   

8.
Actions of PGE1 and indomethacin on electrically induced vasoconstriction in isolated ear arteries of rabbits were studied. PGE1 (8.5 X 10(-9) M) reduced the vasoconstriction; this inhibition was inversely related to the rate of stimulation. Indomethacin (1.5 X 10(-6) M) potentiated the constrictor responses to nerve stimulation. The degree of this potentiation was also frequency-dependent being greater at low (1 - 2 HZ) than at high (8 - 16 HZ) rate of stimulation. These findings support the view that prostaglandins, in addition to their action on vascular smooth muscle cells, play a functional role in the regulation of tone of the rabbit ear artery by a negative feed-back control of adrenergic neurotransmission.  相似文献   

9.
We used scorpion venom to release small amounts of an excitatory neurotransmitter from adventitial nerves in cat left anterior descending cerebral artery. We used glass microelectrodes to measure and record postsynaptic electrical events of minimal amplitude. These events were similar to postsynaptic spontaneous and electrically evoked excitatory junction potentials (ejp's) seen in skeletal muscle. We performed a frequency analysis of the ejp amplitudes to determine if they fit a unimodal or multimodal distribution. We also investigated the effects of phentolamine, norepinephrine, hydromorphone, and morphine on ejp amplitude and frequency in the artery. Statistical analysis of the ejp frequency and amplitude revealed a multipeaked distribution with decreasing peaks. These results were similar to the distribution reported for acetylcholine release in skeletal muscle. The ejps were inhibited by phentolamine, which suggested that these events were adrenergically mediated. Norepinephrine and the opiates, hydromorphone and morphine, reduced the frequency and amplitude of the ejp's. The vessels also constricted to increasing doses of norepinephrine both under control conditions and in the presence of opiate. These results suggest that norepinephrine blocks the ejp's by a feedback mechanism at the presynaptic membrane and that endorphins and/or enkephalins, also acting at this presynaptic site, may modulate neurotransmission in the cerebral circulation.  相似文献   

10.
Actions of adenosine 5'-monophosphate (AMP) on electrical and synaptic behavior of submucosal neurons in guinea pig small intestine were studied with "sharp" intracellular microelectrodes. Application of AMP (0.3-100 microM) evoked slowly activating depolarizing responses associated with increased excitability in 80.5% of the neurons. The responses were concentration dependent with an EC(50) of 3.5 +/- 0.5 microM. They were abolished by the adenosine A(2A) receptor antagonist ZM-241385 but not by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid, trinitrophenyl-ATP, 8-cyclopentyl-1,3-dimethylxanthine, suramin, or MRS-12201220. The AMP-evoked responses were insensitive to AACOCF3 or ryanodine. They were reduced significantly by 1) U-73122, which is a phospholipase C inhibitor; 2) cyclopiazonic acid, which blocks the Ca(2+) pump in intraneuronal membranes; and 3) 2-aminoethoxy-diphenylborane, which is an inositol (1,4,5)-trisphosphate receptor antagonist. Inhibitors of PKC or calmodulin-dependent protein kinase also suppressed the AMP-evoked excitatory responses. Exposure to AMP suppressed fast nicotinic ionotropic postsynaptic potentials, slow metabotropic excitatory postsynaptic potentials, and slow noradrenergic inhibitory postsynaptic potentials in the submucosal plexus. Inhibition of each form of synaptic transmission reflected action at presynaptic inhibitory adenosine A(1) receptors. Slow excitatory postsynaptic potentials, which were mediated by the release of ATP and stimulation of P2Y(1) purinergic receptors in the submucosal plexus, were not suppressed by AMP. The results suggest an excitatory action of AMP at adenosine A(2A) receptors on neuronal cell bodies and presynaptic inhibitory actions mediated by adenosine A(1) receptors for most forms of neurotransmission in the submucosal plexus, with the exception of slow excitatory purinergic transmission mediated by the P2Y(1) receptor subtype.  相似文献   

11.
This study provides mechanical and electrophysiological evidence to show that a metabolite of arginine, not vasoactive intestinal peptide (VIP), is the putative nonadrenergic noncholinergic (NANC) inhibitory mediator in canine and opossum lower esophageal sphincters (LES). Relaxations of spontaneous active tension by electrical field stimulation (FS) at parameters that induced tetrodotoxin (TTX)-sensitive responses were abolished by L-N omega-arginine methyl ester (L-NAME) at 10(-4) M and restored by L-arginine (10(-3) M) but not D-arginine (10(-3) M). TTX-insensitive relaxations to 5-ms pulses were unaffected by L-NAME, L- or D-arginine. VIP (10(-6) M) caused maximum relaxations of basal tension in both the opossum and canine LES. However these relaxations, unlike those from FS were unaffected by L-NAME. Methylene blue (5 x 10(-5)M) increased basal tension of the LES in each species, and did not inhibit the relaxation to FS or VIP, but often increased the amplitudes of these responses due to the increase in basal tension. In parallel experiments NANC inhibition of body circular muscle from opossum esophagus was abolished by methylene blue. Electrophysiological studies using micro-electrodes revealed that NANC inhibition was associated with inhibitory junction potentials in the canine LES. These were inhibited by L-NAME and restored by L-arginine but not D-arginine. In contrast, 10(-6) M VIP in canine LES did not induce any change in membrane potential during a 20-min superfusion. Sodium nitroprusside also hyperpolarized sphincteric muscle and its effects were not affected by L-NAME.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Goto K  Fujii K  Onaka U  Abe I  Fujishima M 《Peptides》2000,21(2):257-263
The effects of adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) on membrane potential and sympathetic neurotransmission were studied in rat mesenteric arteries by using microelectrodes. AM (10(-7) M) but not PAMP (10(-6) M) produced membrane hyperpolarization, which was abolished by high K solution or by glibenclamide, an ATP-sensitive K(+) (KATP) channel blocker. Neither AM nor PAMP affected excitatory junction potentials, a measure of sympathetic, purinergic neurotransmission. These findings suggest that AM hyperpolarizes the membrane via activation of KATP channels, which may contribute to the vasodilatory action of AM, whereas the mechanisms of the vasodepressor action of PAMP remain unclear.  相似文献   

13.
Two buccal mass retractor muscles of Philine are innervatedby at least 4 excitatory motoneurons, whose cell bodies liein the buccal and the cerebral ganglia. The muscle fibres respondto action potentials generated in the motoneurons or their axonswith excitatory junction potentials (ejps), each of which isfollowed by a small twitch-like contraction. Both the electricaland mechanical responses facilitate and summate with repetitivestimulation. A large ventrally located cerebral neuron (VGC) inhibits tensiondevelopment in the muscle by reducing the amplitude of the excitatoryjunction potentials from and identified buccal motoneuron. Acetylcholinereversibly depolarises and causes tonic contraction of the muscles.This action is partially antagonised by hexamethonium, whichalso blocks the ejps from two axons in the buccal and one inthe pedal nerve 9. 5-Hydroxytryptamine potentiates the ejp fromthe identified buccal motoneuron and enhances the rate of relaxation.Histamine reduces the amplitude of the presumed cholinergicbuccal nerve ejps, but does not affect the hexamethonium sensitiveejp in the pedal nerve 9. In this respect its action resemblesthat of the ventral giant cell.  相似文献   

14.
Using the isolated perfused rat pancreas PGE2 (1 MUM and 10 muM) had no effect on basal or glucose (10 and 20 mM)-induced insulin release (IR). PGF2 alpha stimulated basal IR at 1 muM and inhibited IR at 10 muM. The glucose-induced IR was unaffected by this PG. Furosemide (5 and 10 mM) led to a monophastic IR at low glucose (glu) and to a potentiation of IR at high glu. Only high indomethacin (Indo) (50 microgram/ml) inhibited glu-induced IR. The stimulatory effect of furosemide on IR could not be inhibited by indomethacin. However mepacrine (0.1 mM) abolished the furosemide effect. Also glu-induced IR was inhibited by mepacrine. Acetylsalicylic acid (30 mg/100 ml) had no significant influence on glu-induced IR. These findings provide evidence that phospholipase activation rather than increased PG synthesis might primarily be involved in the secretory process of insulin.  相似文献   

15.
The properties of the penis retractor muscle of Aplysia have been studied using intracellular, sucrose gap and tension recording. The fibers are of the invertebrate smooth muscle type and exhibit slow contractions which occur spontaneously or in response to stretch in isolated preparations. Individual muscle fibers are innervated by excitatory and inhibitory axons. A variety of sizes of excitatory and inhibitory junctional potentials can be recorded from them. The innervation is probably diffuse and functionally polyneuronal. The fibers are electrically coupled, permeable to potassium and chloride at rest, and exhibit no overshooting active responses. The muscle shows graded responses of depolarization and contraction proportional to strength of nerve stimulation. Facilitation and depression of junctional potentials are seen with various frequencies of nerve stimulation. Post-tetanic potentiation occurs with nerve stimulation at frequencies from 2 to 50 Hz and is suppressed in the presence of increased extracellular calcium concentrations.  相似文献   

16.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

17.
Using the double sucrose gap, we have examined the role of K+ channels in the cholinergic depolarizations in response to field stimulation and acetylcholine (Ach) in canine trachealis. Acetylcholine-like depolarization per se decreased electrotonic potentials from hyperpolarizing currents. The net effect of acetylcholine (10(-6) M) depolarization on membrane conductance was a small increase after the depolarization was compensated by current clamp. Reversal potentials for acetylcholine depolarization and for the excitatory junction potential (EJP) were determined by extrapolation to be 20-30 mV positive to the resting potential, previously shown to be approximately -55 mV. They were shifted positively by tetraethylammonium ion (TEA) at 20 mM or Ba2+ at 1 mM. TEA or Ba2+ initially depolarized the membrane and increased membrane resistance. Repolarization of the membrane restored any reductions in EJP amplitudes associated with depolarization. After 15 min, the membrane potential partially repolarized, and acetylcholine-induced depolarization and contractions were then increased by TEA. 4-Aminopyridine depolarized the membrane but decreased membrane resistance. Apamin (10(-6) M), charybdotoxin (10(-7) M), and glybenclamide (10(-5) M) each failed to significantly depolarize membranes, increase membrane resistance, or reduce EJP amplitudes or depolarization to 10(-6) M Ach. Glybenclamide reduced depolarizations to added acetylcholine slightly. TEA occasionally reduced the EJP markedly, but this was shown to be most likely a prejunctional effect mediated by norepinephrine release. TEA alone among K(+)-channel blockers slowed the onset and the time courses of the EJP as well as the acetylcholine-induced depolarization. K(+)-channel closure cannot be a complete explanation of acetylcholine-induced membrane effects on this tissue. Acetylcholine must have increased the conductance of an ion with a reversal potential positive to the resting potential in addition to any effect to close K+ channels.  相似文献   

18.
We used a radioenzymatic technique to measure effects of the prostaglandin synthesis inhibitor indomethacin and of exogenous prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) on acetylcholine (ACh) efflux from canine tracheal smooth muscle (TSM) during sustained electrical field stimulation (EFS; 2 Hz, 2 ms pulse duration, 50 V for 15 min). ACh efflux from indomethacin (INDO, 10(-6) M)-pretreated and control TSM increased with consecutive stimulations. However, efflux of ACh was greater in INDO-treated than control muscles. INDO increased the tension produced by TSM in response to EFS. Neither PGE2 (10(-8) M) nor PGI2 (10(-6) M) had any effect on ACh efflux from INDO-pretreated TSM during the first of three periods of EFS. However, PGI2 and PGE2 prevented the progressive increase in ACh efflux observed on subsequent stimulations. PGE2 but not PGI2 decreased contractions of TSM caused by EFS. Our results demonstrate that endogenous prostaglandins, probably PGE2, do inhibit EFS-evoked ACh release from canine TSM in vitro, but suggest that these prostaglandins modulate EFS-evoked contractions predominantly by postsynaptic mechanisms.  相似文献   

19.
The effects of cannabinoid receptor agonists and antagonists on smooth muscle resting membrane potentials and on membrane potentials following electrical neuronal stimulation in a myenteric neuron/smooth muscle preparation of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice were investigated in vitro. Double staining for CB1 and nitric oxide synthase (neuronal) was performed to identify the myenteric CB1-expressing neurons. Focal electrical stimulation of the myenteric plexus induced a fast (f) excitatory junction potential (EJP) followed by a fast and a slow (s) inhibitory junction potential (IJP). Treatment of wild-type mice with the endogenous CB1 receptor agonist anandamide reduced EJP while not affecting fIJP and sIJP. EJP was significantly higher in CB1-deficient mice than in wild-type littermate controls, and anandamide induced no effects in CB1-deficient mice. N-arachidonoyl ethanolamide (anandamide), R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]- 1,4-benzoxazin-6-yl]-1-naphtalenylmethanone, a synthetic CB1 receptor agonist, nearly abolished EJP and significantly reduced the fIJP in wild-type mice. N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxamide (SR141716A), a CB1-specific receptor antagonist, was able to reverse the agonist effects induced in wild-type mice. SR141716A, when given alone, significantly increased EJP in wild-type mice without affecting IJP in wild-type and EJP in CB1-deficient mice. Interestingly, SR141716A reduced fIJP in CB1-deficient mice. In the mouse colon, nitrergic myenteric neurons do not express CB1, implying that CB1 is expressed in cholinergic neurons, which is in line with the functional data. Finally, excitatory and inhibitory neurotransmission in the mouse colon is modulated by activation of CB1 receptors. The significant increase in EJP in CB1-deficient mice strongly suggests a physiological involvement of CB1 in excitatory cholinergic neurotransmission.  相似文献   

20.
Measurements of resting potential and action potential in presynaptic branches of the excitatory motor axon to the crayfish opener muscle were made with intracellular microelectrodes during application of serotonin (10(-9)-10(-3) M). A 5-min exposure to 10(-6) M serotonin produced enhancement of excitatory junction potentials (EJPs) lasting about 1 h. The membrane potential of the presynaptic terminal was depolarized by about 5 mV; the depolarization subsided within 1/2 h. Concomitant reduction in amplitude of the presynaptic action potential, not accompanied by spike broadening, was observed. The presynaptic depolarization, and the enhancement of EJPs, were dependent on the presence of extracellular sodium but not extracellular calcium. A possible mechanism for serotonin's effect involves initial entry of sodium into the nerve terminal, with consequent increased availability of intracellular calcium. The subsequent long-lasting phase of EJP enhancement may result from an additional effect on the metabolism of the nerve terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号