首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.  相似文献   

2.
This work is focused on the design of new antimicrobial drugs and on the development of lipophilic inhibitors of the DXR, the second enzyme of the MEP pathway for the biosynthesis of isoprene units in most bacteria, by replacing the phosphonate group of fosmidomycin derivatives by a tetrazoyl moiety capable of multiple hydrogen bonding. The N- and C-substituted tetrazole analogues of phosphonohydroxamate inhibitors were synthesized and tested on the DXR of Escherichia coli. This work points out the hypothesis that the phosphonate/phosphate recognition site might be too rigid to accommodate other functional groups.  相似文献   

3.
A variety of lipophilic 2-oxoamides based on gamma-aminobutyric and delta-aminovaleric analogues were synthesized. 2-oxoamides containing a tetrazole, a thioethyl or a thioacetyl group are weak inhibitors of GIVA cPLA(2), while derivatives containing a methyl tetrazole, a diethyl phosphonate or a thioethyl group are weak inhibitors of GV sPLA(2).  相似文献   

4.
The synthesis and characterization of three new 4‐pyridyl porphyrin‐peptidyl‐phosphonate compounds, containing a diphenyl 3‐pyridylmethyl‐phosphonate moiety, is described in this article. Nitrogen atoms in the pyridine rings of the obtained compounds were alkylated using methyl iodide, to give additional three, water soluble derivatives of these peptidyl‐porphyrin conjugates. All the synthesized compounds could serve as potential photosensitizers for the photodynamic therapy (PDT) method of tumor therapy and displayed activity as inhibitors of aminopeptidase N. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Anti-HIV activity and cytotoxicity were tested for novel phosphonate derivatives of AZT, d4T and ddA. For d4T phosphonate derivatives the most active was 2',3'-Dideoxy-2',3'-didehydrothymidine 5'-isopropylphosphite and among the AZT phosphonate derivatives highest activity was shown by 2',3'-Dideoxy-3'-azidothymidine 5'-cyclohexylphosphite.  相似文献   

6.
In an effort to use a structure-based approach for the design of new herbicides, the crystal structures of complexes of tryptophan synthase with a series of phosphonate enzyme inhibitors were determined at 2.3 A or higher resolution. These inhibitors were designed to mimic the transition state formed during the alpha-reaction of the enzyme and, as expected, have affinities much greater than that of the natural substrate indole-3-glycerol phosphate or its nonhydrolyzable analogue indole propanol phosphate (IPP). These inhibitors are ortho-substituted arylthioalkylphosphonate derivatives that have an sp(3)-hybridized sulfur atom, designed to mimic the putative tetrahedral transition state at the C3 atom of the indole, and lack the C2 atom to allow for higher conformational flexibility. Overall, the inhibitors bind in a fashion similar to that of IPP. Glu-49 and Phe-212 are the two active site residues whose conformation changes upon inhibitor binding. A very short hydrogen bond between a phosphonate oxygen and the Ser-235 hydroxyl oxygen may be responsible for stabilization of the enzyme-inhibitor complexes. Implications for the mechanism of catalysis as well as directions for more potent inhibitors are discussed.  相似文献   

7.
Anti-HIV activity and cytotoxicity were tested for novel phosphonate derivatives of AZT, d4T and ddA. For d4T phosphonate derivatives the most active was 2′,3′-Dideoxy-2′,3′-didehydrothymidine 5′-isopropylphosphite and among the AZT phosphonate derivatives highest activity was shown by 2′,3′-Dideoxy-3′-azidothymidine 5′-cyclohexylphosphite.  相似文献   

8.
In this paper, 20 kinds of different 2-(α-arylamino phosphonate)-chitosan (2-α-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-α-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-α-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 μg mL−1. Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper.  相似文献   

9.
Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration, and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC). ATX is thus an attractive drug target; small molecular inhibitors might be efficacious in slowing the spread of cancers. With this study we have generated a series of beta-keto and beta-hydroxy phosphonate derivatives of LPA, some of which are potent ATX inhibitors.  相似文献   

10.
Several 9-(phosphonoalkyl)guanines (Gua(CH2)nCH2-PO3H2; n = 4-6) and 9-(difluorophosphonoalkyl)guanines (Gua(CH2)nCF2PO3H2; n = 3-7) were studied as potential substrates and inhibitors of guanylate kinase. These compounds are inhibitors of the enzyme except 9-(5-phosphonopentyl)guanine (n = 4) which is a substrate with an efficiency of phosphorylation of about 0.3% that of GMP, as estimated from the Vmax/Km ratios. The phosphonate and difluorophosphonate derivatives with n = 5 produce optimal inhibition. These two compounds have similar affinity, both being competitive inhibitors with respect to GMP and noncompetitive inhibitors with respect to ATP. pH-dependence studies indicate that the dianionic rather than the monoanionic form of these compounds bind to the enzyme. The lack of phosphorylation of 9-(5,5-difluoro-5-phosphonopentyl)guanine by guanylate kinase is explained by the decreased nucleophilic character of the oxygen atoms of the phosphonate group rather than by inadequate binding to the GMP-binding site.  相似文献   

11.
A number of substrate analogous peptides containing a phosphoramidate, phosphonate ester, hydroxamate, carboxylate or sulfhydryl group are known to be inhibitors of thermolysin and other metalloproteinases. According to the specificity, most of the inhibitors mimic the prime site of the active center. Hitherto, peptidyl derivatives with a thiol group at the C-terminus have not been described. We have synthesized the protected cysteamides Ac-Ala-Ala-CA-SH and Z-Aa1-Aa2-CA-SH (Aa1: Ala, Pro; Aa2: Ala, Leu). The binding of these thiol peptide inhibitors to the metalloproteinases is characterized first by the coordination of the thiolate group of the inhibitor to the catalytic zinc ion and second by the subsite interaction of the peptide ligand in the active site of the enzyme. All peptide derivatives were competitive inhibitors of the zinc metalloproteinase thermolysin. The strongest inhibition was found with Z-Pro-Leu-CA-SH (Ki = 30 microM). Substitution of the N-protecting benzyloxycarbonyl residue towards the acetyl group in the peptide inhibitor, the inhibition constant decreased about 25 times.  相似文献   

12.
Purple acid phosphatases (PAPs) are binuclear metallo-hydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals, PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. The aim of the present study was to investigate inhibitory effect of synthesized diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives as potential red kidney bean PAP (rkbPAP) inhibitors accompanied by experimental and molecular modeling assessments. Enzyme kinetic data showed that they are good rkbPAP inhibitors whose potencies improve with increasing alkyl chain length. Hexadecyl derivatives, as most potent compounds (Ki?=?1.1?µM), inhibit rkbPAP in the mixed manner, while dodecyl derivatives act as efficient noncompetitive inhibitor. Also, analysis by molecular modeling of the structure of the rkbPAP–inhibitor complexes reveals factors, which may be important for the determination of inhibition specificity.  相似文献   

13.
Methylanthraniloyl derivatives of ATP and CDP were used in vitro as fluorescent probes for the donor-binding and acceptor-binding sites of human UMP-CMP kinase, a nucleoside salvage pathway kinase. Like all NMP kinases, UMP-CMP kinase binds the phosphodonor, usually ATP, and the NMP at different binding sites. The reaction results from an in-line phosphotransfer from the donor to the acceptor. The probe for the donor site was displaced by the bisubstrate analogs of the Ap5X series (where X = U, dT, A, G), indicating the broad specificity of the acceptor site. Both CMP and dCMP were competitors for the acceptor site probe. To find antimetabolites for antivirus and anticancer therapies, we have developed a method of screening acyclic phosphonate analogs that is based on the affinity of the acceptor-binding site of the human UMP-CMP kinase. Several uracil vinylphosphonate derivatives had affinities for human UMP-CMP kinase similar to those of dUMP and dCMP and better than that of cidofovir, an acyclic nucleoside phosphonate with a broad spectrum of antiviral activities. The uracil derivatives were inhibitors rather than substrates of human UMP-CMP kinase. Also, the 5-halogen-substituted analogs inhibited the human TMP kinase less efficiently. The broad specificity of the enzyme acceptor-binding site is in agreement with a large substrate-binding pocket, as shown by the 2.1 A crystal structure.  相似文献   

14.
Inhibition of Yersinia protein tyrosine phosphatase by calix[4]arene mono-, bis-, and tetrakis(methylenebisphosphonic) acids as well as calix[4]arene and thiacalix[4]arene tetrakis(methylphosphonic) acids have been investigated. The kinetic studies revealed that some compounds in this class are potent competitive inhibitors of Yersinia PTP with inhibition constants in the low micromolar range. The binding modes of macrocyclic phosphonate derivatives in the enzyme active center have been explained using computational docking approach. The results obtained indicate that calix[4]arenes are promising scaffolds for the development of inhibitors of Yersinia PTP.  相似文献   

15.
Abstract

α -Aminoalkylphosphonate di(chlorophenyl) esters and (α -aminoalkyl)phenylphosphinate phenylesters have been tested as irreversible inhibitors of human neutrophil elastase, porcine pancreatic elastase and chymotrypsin, serine proteases important in biochemical processes. Peptidyl derivatives of diphenyl (α -aminoalkyl) phosphonates have previously been shown to be potent and specific inhibitors of serine proteases at low concentrations. Addition of a halogen to the phenoxy group of the inhibitors should make the leaving group more electrophilic, and thus more reactive. Peptide phosphonate inhibitors with chlorine in the meta- or para- positions of the phenoxy ester moiety were synthesized and shown to be potent inhibitors of elastase. Tripeptide phosphonates are more potent inhibitors than dipeptide phosphonates, however, addition of the halogen did not increase the inhibitory potency of these phosphonates with elastase compared to the non-halogenated phosphonates. In the case of chymotrypsin, the halogenated phenoxy esters were more reactive, possibly due to an alternate binding mode. The novel (α -aminoalkyl)phenylphosphinate phenylesters were poor inhibitors of serine proteases.  相似文献   

16.
The Carbohydrate Esterase family 4 contains virulence factors which modify peptidoglycan and biofilm-related exopolysaccharides. Despite the importance of this family of enzymes, a potent mechanism-based inhibition strategy has yet to emerge. Based on the postulated tridentate binding mode of the tetrahedral de-N-acetylation intermediate, GlcNAc derivatives bearing metal chelating groups at the 2 and 3 positions were synthesized. These scaffolds include 2-C phosphonate, 2-C sulfonamide, 2-thionoacetamide warheads as well as derivatives bearing thiol, amine and azide substitutions at the 3-position. The inhibitors were assayed against a representative peptidoglycan deacetylase, Pgda from Streptococcus pneumonia, and a representative biofilm-related exopolysaccharide deacetylase, PgaB from Escherichia coli. Of the inhibitors evaluated, the 3-thio derivatives showed weak to moderate inhibition of Pgda. The strongest inhibitor was benzyl 2,3-dideoxy-2-thionoacetamide-3-thio-β-d-glucoside, whose inhibitory potency showed an unexpected dependence on metal concentration and was found to have a partial mixed inhibition mode (Ki?=?2.9?±?0.6?μM).  相似文献   

17.
Synthesis of novel inhibitors of human IMP dehydrogenase is described. These inhibitors are isosteric methylenebis(sulfonamide) analogues 5-8 of earlier reported mycophenolic adenine methylenebis(phosphonate)s 1-3. The parent bis(phosphonate) 1 and its bis(sulfonamide) analogue 5 showed similar sub-micromolar inhibitory activity against IMPDH2 (K(i) approximately 0.2 microM). However, the bis(sulfonamide) analogues 6 and 8 substituted at the position 2 of adenine were approximately 3- to 10-fold less potent inhibitors of IMPDH2 (K(i)=0.3-0.4 microM) than the corresponding parent bis(phosphonate)s 2 and 3 (K(i)=0.04-0.11 microM), respectively.  相似文献   

18.
A series of nanomolar phosphonate matrix metalloproteinase (MPP) inhibitors was tested for inhibitory activity against a panel of selected human carbonic anhydrase (CA, EC 4.2.1.1) isozymes, covering the cancer-associated CA IX and XII. None of the reported sulfonyl and sulfonylamino-derivatives sensitively affected the catalytic activity of the cytosolic isoforms CA I and II, which are considered off-target isoforms in view of their physiological role. The most active inhibitors were in the series of chiral N-(sulfonyl)phosphovaline derivatives, which showed good to excellent inhibitory activity over target CAs, with compound 15 presenting the best isoform-selectivity toward CA IX. We suggest here that the phosphonates have the potential as dual inhibitors of MMPs and CAs, both involved in tumor formation, invasion and metastasis.  相似文献   

19.
The uptake of the phosphonate ion, the active breakdown product in plant tissues of the systemic anti-Oomycete compound Fosetyl-Al (aluminium tris-Oethylphosphonate), was investigated in two Phytophthora spp. of differential sensitivity. Uptake was due to the simultaneous operation of two transport systems, one of low affinity (high K m) and one of high affinity (low K m). The relative contribution of each transport system varied with the external concentration of phosphonate, suggesting that phosphonate was a potent regulator of both systems. Phosphate was a partial competitive inhibitor with respect to phosphonate. Phosphate competed with phosphonate for uptake with a K i of 105 M for P. cryptogea and 68 M for P. citrophthora. Uptake was sensitive to pH, showing a maximum at pH 5.0 to 5.5. P. cryptogea was more efficient in phosphonate uptake, although it was less sensitive to inhibition by phosphonate in vitro, than P. citrophthora. This implied that the selective activity of phosphonate was not due to differential rates of uptake of this oxyanion. These results were discussed in relation to the mode of action of phosphonate towards Oomycetes.  相似文献   

20.
The first phosphonate inhibitors of antigen 85C--a major protein component of the Mycobacterium tuberculosis cell wall possessing mycolyltransferase activity were prepared using structure-based design. These potential novel antituberculosis agents, consisting of a phosphonate moiety, hydrophobic alkyl chain and a simple trehalose-mimicking aromatic structure, were designed as tetrahedral transition-state analogue inhibitors of antigen 85C, which catalyzes the key mycolyltransferase reaction involved in cell wall biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号